Search (189 results, page 1 of 10)

  • × theme_ss:"Computerlinguistik"
  1. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.10
    0.10409279 = sum of:
      0.08288213 = product of:
        0.24864638 = sum of:
          0.24864638 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
            0.24864638 = score(doc=562,freq=2.0), product of:
              0.4424171 = queryWeight, product of:
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.052184064 = queryNorm
              0.56201804 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
        0.33333334 = coord(1/3)
      0.021210661 = product of:
        0.042421322 = sum of:
          0.042421322 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
            0.042421322 = score(doc=562,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.23214069 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
        0.5 = coord(1/2)
    
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
  2. Haas, S.W.: Natural language processing : toward large-scale, robust systems (1996) 0.06
    0.05908383 = product of:
      0.11816766 = sum of:
        0.11816766 = sum of:
          0.061605897 = weight(_text_:systems in 7415) [ClassicSimilarity], result of:
            0.061605897 = score(doc=7415,freq=4.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.38414678 = fieldWeight in 7415, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0625 = fieldNorm(doc=7415)
          0.056561764 = weight(_text_:22 in 7415) [ClassicSimilarity], result of:
            0.056561764 = score(doc=7415,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.30952093 = fieldWeight in 7415, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=7415)
      0.5 = coord(1/2)
    
    Abstract
    State of the art review of natural language processing updating an earlier review published in ARIST 22(1987). Discusses important developments that have allowed for significant advances in the field of natural language processing: materials and resources; knowledge based systems and statistical approaches; and a strong emphasis on evaluation. Reviews some natural language processing applications and common problems still awaiting solution. Considers closely related applications such as language generation and th egeneration phase of machine translation which face the same problems as natural language processing. Covers natural language methodologies for information retrieval only briefly
  3. Rahmstorf, G.: Concept structures for large vocabularies (1998) 0.04
    0.044312872 = product of:
      0.088625744 = sum of:
        0.088625744 = sum of:
          0.04620442 = weight(_text_:systems in 75) [ClassicSimilarity], result of:
            0.04620442 = score(doc=75,freq=4.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.28811008 = fieldWeight in 75, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.046875 = fieldNorm(doc=75)
          0.042421322 = weight(_text_:22 in 75) [ClassicSimilarity], result of:
            0.042421322 = score(doc=75,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.23214069 = fieldWeight in 75, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=75)
      0.5 = coord(1/2)
    
    Abstract
    A technology is described which supports the acquisition, visualisation and manipulation of large vocabularies with associated structures. It is used for dictionary production, terminology data bases, thesauri, library classification systems etc. Essential features of the technology are a lexicographic user interface, variable word description, unlimited list of word readings, a concept language, automatic transformations of formulas into graphic structures, structure manipulation operations and retransformation into formulas. The concept language includes notations for undefined concepts. The structure of defined concepts can be constructed interactively. The technology supports the generation of large vocabularies with structures representing word senses. Concept structures and ordering systems for indexing and retrieval can be constructed separately and connected by associating relations.
    Date
    30.12.2001 19:01:22
  4. Kay, M.: ¬The proper place of men and machines in language translation (1997) 0.04
    0.043804124 = product of:
      0.08760825 = sum of:
        0.08760825 = sum of:
          0.038116705 = weight(_text_:systems in 1178) [ClassicSimilarity], result of:
            0.038116705 = score(doc=1178,freq=2.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.23767869 = fieldWeight in 1178, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1178)
          0.049491543 = weight(_text_:22 in 1178) [ClassicSimilarity], result of:
            0.049491543 = score(doc=1178,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.2708308 = fieldWeight in 1178, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1178)
      0.5 = coord(1/2)
    
    Abstract
    Machine translation stands no chance of filling actual needs for translation because, although there has been progress in relevant areas of computer science, advance in linguistics have not touched the core problems. Cooperative man-machine systems need to be developed, Proposes a translator's amanuensis, incorporating into a word processor some simple facilities peculiar to translation. Gradual enhancements of such a system could lead to the original goal of machine translation
    Date
    31. 7.1996 9:22:19
  5. Liddy, E.D.: Natural language processing for information retrieval and knowledge discovery (1998) 0.04
    0.043804124 = product of:
      0.08760825 = sum of:
        0.08760825 = sum of:
          0.038116705 = weight(_text_:systems in 2345) [ClassicSimilarity], result of:
            0.038116705 = score(doc=2345,freq=2.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.23767869 = fieldWeight in 2345, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2345)
          0.049491543 = weight(_text_:22 in 2345) [ClassicSimilarity], result of:
            0.049491543 = score(doc=2345,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.2708308 = fieldWeight in 2345, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2345)
      0.5 = coord(1/2)
    
    Abstract
    Natural language processing (NLP) is a powerful technology for the vital tasks of information retrieval (IR) and knowledge discovery (KD) which, in turn, feed the visualization systems of the present and future and enable knowledge workers to focus more of their time on the vital tasks of analysis and prediction
    Date
    22. 9.1997 19:16:05
  6. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.04
    0.041441064 = product of:
      0.08288213 = sum of:
        0.08288213 = product of:
          0.24864638 = sum of:
            0.24864638 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
              0.24864638 = score(doc=862,freq=2.0), product of:
                0.4424171 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.052184064 = queryNorm
                0.56201804 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
  7. Doszkocs, T.E.; Zamora, A.: Dictionary services and spelling aids for Web searching (2004) 0.04
    0.038610112 = product of:
      0.077220224 = sum of:
        0.077220224 = sum of:
          0.027226217 = weight(_text_:systems in 2541) [ClassicSimilarity], result of:
            0.027226217 = score(doc=2541,freq=2.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.1697705 = fieldWeight in 2541, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2541)
          0.049994007 = weight(_text_:22 in 2541) [ClassicSimilarity], result of:
            0.049994007 = score(doc=2541,freq=4.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.27358043 = fieldWeight in 2541, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2541)
      0.5 = coord(1/2)
    
    Abstract
    The Specialized Information Services Division (SIS) of the National Library of Medicine (NLM) provides Web access to more than a dozen scientific databases on toxicology and the environment on TOXNET . Search queries on TOXNET often include misspelled or variant English words, medical and scientific jargon and chemical names. Following the example of search engines like Google and ClinicalTrials.gov, we set out to develop a spelling "suggestion" system for increased recall and precision in TOXNET searching. This paper describes development of dictionary technology that can be used in a variety of applications such as orthographic verification, writing aid, natural language processing, and information storage and retrieval. The design of the technology allows building complex applications using the components developed in the earlier phases of the work in a modular fashion without extensive rewriting of computer code. Since many of the potential applications envisioned for this work have on-line or web-based interfaces, the dictionaries and other computer components must have fast response, and must be adaptable to open-ended database vocabularies, including chemical nomenclature. The dictionary vocabulary for this work was derived from SIS and other databases and specialized resources, such as NLM's Unified Medical Language Systems (UMLS) . The resulting technology, A-Z Dictionary (AZdict), has three major constituents: 1) the vocabulary list, 2) the word attributes that define part of speech and morphological relationships between words in the list, and 3) a set of programs that implements the retrieval of words and their attributes, and determines similarity between words (ChemSpell). These three components can be used in various applications such as spelling verification, spelling aid, part-of-speech tagging, paraphrasing, and many other natural language processing functions.
    Date
    14. 8.2004 17:22:56
    Source
    Online. 28(2004) no.3, S.22-29
  8. Dorr, B.J.: Large-scale dictionary construction for foreign language tutoring and interlingual machine translation (1997) 0.04
    0.03754639 = product of:
      0.07509278 = sum of:
        0.07509278 = sum of:
          0.03267146 = weight(_text_:systems in 3244) [ClassicSimilarity], result of:
            0.03267146 = score(doc=3244,freq=2.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.2037246 = fieldWeight in 3244, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.046875 = fieldNorm(doc=3244)
          0.042421322 = weight(_text_:22 in 3244) [ClassicSimilarity], result of:
            0.042421322 = score(doc=3244,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.23214069 = fieldWeight in 3244, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3244)
      0.5 = coord(1/2)
    
    Abstract
    Describes techniques for automatic construction of dictionaries for use in large-scale foreign language tutoring (FLT) and interlingual machine translation (MT) systems. The dictionaries are based on a language independent representation called lexical conceptual structure (LCS). Demonstrates that synonymous verb senses share distribution patterns. Shows how the syntax-semantics relation can be used to develop a lexical acquisition approach that contributes both toward the enrichment of existing online resources and toward the development of lexicons containing more complete information than is provided in any of these resources alone. Describes the structure of the LCS and shows how this representation is used in FLT and MT. Focuses on the problem of building LCS dictionaries for large-scale FLT and MT. Describes authoring tools for manual and semi-automatic construction of LCS dictionaries. Presents an approach that uses linguistic techniques for building word definitions automatically. The techniques have been implemented as part of a set of lixicon-development tools used in the MILT FLT project
    Date
    31. 7.1996 9:22:19
  9. Computational linguistics for the new millennium : divergence or synergy? Proceedings of the International Symposium held at the Ruprecht-Karls Universität Heidelberg, 21-22 July 2000. Festschrift in honour of Peter Hellwig on the occasion of his 60th birthday (2002) 0.03
    0.03128866 = product of:
      0.06257732 = sum of:
        0.06257732 = sum of:
          0.027226217 = weight(_text_:systems in 4900) [ClassicSimilarity], result of:
            0.027226217 = score(doc=4900,freq=2.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.1697705 = fieldWeight in 4900, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4900)
          0.0353511 = weight(_text_:22 in 4900) [ClassicSimilarity], result of:
            0.0353511 = score(doc=4900,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.19345059 = fieldWeight in 4900, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4900)
      0.5 = coord(1/2)
    
    Content
    Contents: Manfred Klenner / Henriette Visser: Introduction - Khurshid Ahmad: Writing Linguistics: When I use a word it means what I choose it to mean - Jürgen Handke: 2000 and Beyond: The Potential of New Technologies in Linguistics - Jurij Apresjan / Igor Boguslavsky / Leonid Iomdin / Leonid Tsinman: Lexical Functions in NU: Possible Uses - Hubert Lehmann: Practical Machine Translation and Linguistic Theory - Karin Haenelt: A Contextbased Approach towards Content Processing of Electronic Documents - Petr Sgall / Eva Hajicová: Are Linguistic Frameworks Comparable? - Wolfgang Menzel: Theory and Applications in Computational Linguistics - Is there Common Ground? - Robert Porzel / Michael Strube: Towards Context-adaptive Natural Language Processing Systems - Nicoletta Calzolari: Language Resources in a Multilingual Setting: The European Perspective - Piek Vossen: Computational Linguistics for Theory and Practice.
  10. Fóris, A.: Network theory and terminology (2013) 0.03
    0.03128866 = product of:
      0.06257732 = sum of:
        0.06257732 = sum of:
          0.027226217 = weight(_text_:systems in 1365) [ClassicSimilarity], result of:
            0.027226217 = score(doc=1365,freq=2.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.1697705 = fieldWeight in 1365, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1365)
          0.0353511 = weight(_text_:22 in 1365) [ClassicSimilarity], result of:
            0.0353511 = score(doc=1365,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.19345059 = fieldWeight in 1365, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1365)
      0.5 = coord(1/2)
    
    Abstract
    The paper aims to present the relations of network theory and terminology. The model of scale-free networks, which has been recently developed and widely applied since, can be effectively used in terminology research as well. Operation based on the principle of networks is a universal characteristic of complex systems. Networks are governed by general laws. The model of scale-free networks can be viewed as a statistical-probability model, and it can be described with mathematical tools. Its main feature is that "everything is connected to everything else," that is, every node is reachable (in a few steps) starting from any other node; this phenomena is called "the small world phenomenon." The existence of a linguistic network and the general laws of the operation of networks enable us to place issues of language use in the complex system of relations that reveal the deeper connection s between phenomena with the help of networks embedded in each other. The realization of the metaphor that language also has a network structure is the basis of the classification methods of the terminological system, and likewise of the ways of creating terminology databases, which serve the purpose of providing easy and versatile accessibility to specialised knowledge.
    Date
    2. 9.2014 21:22:48
  11. Warner, A.J.: Natural language processing (1987) 0.03
    0.028280882 = product of:
      0.056561764 = sum of:
        0.056561764 = product of:
          0.11312353 = sum of:
            0.11312353 = weight(_text_:22 in 337) [ClassicSimilarity], result of:
              0.11312353 = score(doc=337,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.61904186 = fieldWeight in 337, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=337)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Annual review of information science and technology. 22(1987), S.79-108
  12. Kreymer, O.: ¬An evaluation of help mechanisms in natural language information retrieval systems (2002) 0.03
    0.025829058 = product of:
      0.051658116 = sum of:
        0.051658116 = product of:
          0.10331623 = sum of:
            0.10331623 = weight(_text_:systems in 2557) [ClassicSimilarity], result of:
              0.10331623 = score(doc=2557,freq=20.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.64423376 = fieldWeight in 2557, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2557)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The field of natural language processing (NLP) demonstrates rapid changes in the design of information retrieval systems and human-computer interaction. While natural language is being looked on as the most effective tool for information retrieval in a contemporary information environment, the systems using it are only beginning to emerge. This study attempts to evaluate the current state of NLP information retrieval systems from the user's point of view: what techniques are used by these systems to guide their users through the search process? The analysis focused on the structure and components of the systems' help mechanisms. Results of the study demonstrated that systems which claimed to be using natural language searching in fact used a wide range of information retrieval techniques from real natural language processing to Boolean searching. As a result, the user assistance mechanisms of these systems also varied. While pseudo-NLP systems would suit a more traditional method of instruction, real NLP systems primarily utilised the methods of explanation and user-system dialogue.
  13. McMahon, J.G.; Smith, F.J.: Improved statistical language model performance with automatic generated word hierarchies (1996) 0.02
    0.024745772 = product of:
      0.049491543 = sum of:
        0.049491543 = product of:
          0.09898309 = sum of:
            0.09898309 = weight(_text_:22 in 3164) [ClassicSimilarity], result of:
              0.09898309 = score(doc=3164,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.5416616 = fieldWeight in 3164, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3164)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Computational linguistics. 22(1996) no.2, S.217-248
  14. Ruge, G.: ¬A spreading activation network for automatic generation of thesaurus relationships (1991) 0.02
    0.024745772 = product of:
      0.049491543 = sum of:
        0.049491543 = product of:
          0.09898309 = sum of:
            0.09898309 = weight(_text_:22 in 4506) [ClassicSimilarity], result of:
              0.09898309 = score(doc=4506,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.5416616 = fieldWeight in 4506, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4506)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    8.10.2000 11:52:22
  15. Somers, H.: Example-based machine translation : Review article (1999) 0.02
    0.024745772 = product of:
      0.049491543 = sum of:
        0.049491543 = product of:
          0.09898309 = sum of:
            0.09898309 = weight(_text_:22 in 6672) [ClassicSimilarity], result of:
              0.09898309 = score(doc=6672,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.5416616 = fieldWeight in 6672, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6672)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    31. 7.1996 9:22:19
  16. New tools for human translators (1997) 0.02
    0.024745772 = product of:
      0.049491543 = sum of:
        0.049491543 = product of:
          0.09898309 = sum of:
            0.09898309 = weight(_text_:22 in 1179) [ClassicSimilarity], result of:
              0.09898309 = score(doc=1179,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.5416616 = fieldWeight in 1179, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1179)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    31. 7.1996 9:22:19
  17. Baayen, R.H.; Lieber, H.: Word frequency distributions and lexical semantics (1997) 0.02
    0.024745772 = product of:
      0.049491543 = sum of:
        0.049491543 = product of:
          0.09898309 = sum of:
            0.09898309 = weight(_text_:22 in 3117) [ClassicSimilarity], result of:
              0.09898309 = score(doc=3117,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.5416616 = fieldWeight in 3117, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3117)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    28. 2.1999 10:48:22
  18. ¬Der Student aus dem Computer (2023) 0.02
    0.024745772 = product of:
      0.049491543 = sum of:
        0.049491543 = product of:
          0.09898309 = sum of:
            0.09898309 = weight(_text_:22 in 1079) [ClassicSimilarity], result of:
              0.09898309 = score(doc=1079,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.5416616 = fieldWeight in 1079, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1079)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    27. 1.2023 16:22:55
  19. Goshawke, W.; Kelly, D.K.; Wigg, J.D.: Computer translation of natural language (1987) 0.02
    0.02310221 = product of:
      0.04620442 = sum of:
        0.04620442 = product of:
          0.09240884 = sum of:
            0.09240884 = weight(_text_:systems in 4819) [ClassicSimilarity], result of:
              0.09240884 = score(doc=4819,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.57622015 = fieldWeight in 4819, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4819)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    PRECIS
    Languages / Translation / Applications of computer systems
    Subject
    Languages / Translation / Applications of computer systems
  20. Solvberg, I.; Nordbo, I.; Aamodt, A.: Knowledge-based information retrieval (1991/92) 0.02
    0.021780973 = product of:
      0.043561947 = sum of:
        0.043561947 = product of:
          0.08712389 = sum of:
            0.08712389 = weight(_text_:systems in 546) [ClassicSimilarity], result of:
              0.08712389 = score(doc=546,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.5432656 = fieldWeight in 546, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.125 = fieldNorm(doc=546)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Future generations computer systems. 7(1991/92), S. -

Languages

  • e 156
  • d 29
  • ru 3
  • m 2
  • f 1
  • More… Less…

Types

  • a 148
  • m 25
  • el 17
  • s 11
  • x 4
  • p 3
  • d 1
  • r 1
  • More… Less…

Subjects

Classifications