Search (56 results, page 3 of 3)

  • × theme_ss:"Grundlagen u. Einführungen: Allgemeine Literatur"
  1. Nohr, H.: Grundlagen der automatischen Indexierung : ein Lehrbuch (2003) 0.01
    0.0070702205 = product of:
      0.014140441 = sum of:
        0.014140441 = product of:
          0.028280882 = sum of:
            0.028280882 = weight(_text_:22 in 1767) [ClassicSimilarity], result of:
              0.028280882 = score(doc=1767,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.15476047 = fieldWeight in 1767, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1767)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 6.2009 12:46:51
  2. Brühl, B.: Thesauri und Klassifikationen : Naturwissenschaften - Technik - Wirtschaft (2005) 0.01
    0.0070702205 = product of:
      0.014140441 = sum of:
        0.014140441 = product of:
          0.028280882 = sum of:
            0.028280882 = weight(_text_:22 in 3487) [ClassicSimilarity], result of:
              0.028280882 = score(doc=3487,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.15476047 = fieldWeight in 3487, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3487)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Series
    Materialien zur Information und Dokumentation; Bd.22
  3. Bowman, J.H.: Essential Dewey (2005) 0.01
    0.0070702205 = product of:
      0.014140441 = sum of:
        0.014140441 = product of:
          0.028280882 = sum of:
            0.028280882 = weight(_text_:22 in 359) [ClassicSimilarity], result of:
              0.028280882 = score(doc=359,freq=8.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.15476047 = fieldWeight in 359, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=359)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    "The contents of the book cover: This book is intended as an introduction to the Dewey Decimal Classification, edition 22. It is not a substitute for it, and I assume that you have it, all four volumes of it, by you while reading the book. I have deliberately included only a short section an WebDewey. This is partly because WebDewey is likely to change more frequently than the printed version, but also because this book is intended to help you use the scheme regardless of the manifestation in which it appears. If you have a subscription to WebDewey and not the printed volumes you may be able to manage with that, but you may then find my references to volumes and page numbers baffling. All the examples and exercises are real; what is not real is the idea that you can classify something without seeing more than the title. However, there is nothing that I can do about this, and I have therefore tried to choose examples whose titles adequately express their subject-matter. Sometimes when you look at the 'answers' you may feel that you have been cheated, but I hope that this will be seldom. Two people deserve special thanks. My colleague Vanda Broughton has read drafts of the book and made many suggestions. Ross Trotter, chair of the CILIP Dewey Decimal Classification Committee, who knows more about Dewey than anyone in Britain today, has commented extensively an it and as far as possible has saved me from error, as well as suggesting many improvements. What errors remain are due to me alone. Thanks are also owed to OCLC Online Computer Library Center, for permission to reproduce some specimen pages of DDC 22. Excerpts from the Dewey Decimal Classification are taken from the Dewey Decimal Classification and Relative Index, Edition 22 which is Copyright 2003 OCLC Online Computer Library Center, Inc. DDC, Dewey, Dewey Decimal Classification and WebDewey are registered trademarks of OCLC Online Computer Library Center, Inc."
    Object
    DDC-22
  4. Taylor, A.G.: ¬The organization of information (1999) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 1453) [ClassicSimilarity], result of:
              0.027226217 = score(doc=1453,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 1453, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1453)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Taylor intends this book to be preparatory to traditional texts on cataloging and classification. She reviews why and how recorded information is organized in libraries, archives, museums, and art galleries. She then turns to the methods of retrieving information, such as through bibliographies and catalogs, and methods of encoding information (e.g., MARC and SGML), the metadata related to description and access, subject analysis by means of words, and classification as a further means of subject access. A chapter on systems for information storage and retrieval concludes a book that well fills the need for a single-volume introduction on its subject.
  5. Sprachtechnologie : ein Überblick (2012) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 1750) [ClassicSimilarity], result of:
              0.027226217 = score(doc=1750,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 1750, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1750)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Seit mehr als einem halben Jahrhundert existieren ernsthafte und ernst zu nehmende Versuche, menschliche Sprache maschinell zu verarbeiten. Maschinelle Übersetzung oder "natürliche" Dialoge mit Computern gehören zu den ersten Ideen, die den Bereich der späteren Computerlinguistik oder Sprachtechnologie abgesteckt und deren Vorhaben geleitet haben. Heute ist dieser auch maschinelle Sprachverarbeitung (natural language processing, NLP) genannte Bereich stark ausdiversifiziert: Durch die rapide Entwicklung der Informatik ist vieles vorher Unvorstellbare Realität (z. B. automatische Telefonauskunft), einiges früher Unmögliche immerhin möglich geworden (z. B. Handhelds mit Sprachein- und -ausgabe als digitale persönliche (Informations-)Assistenten). Es gibt verschiedene Anwendungen der Computerlinguistik, von denen einige den Sprung in die kommerzielle Nutzung geschafft haben (z. B. Diktiersysteme, Textklassifikation, maschinelle Übersetzung). Immer noch wird an natürlichsprachlichen Systemen (natural language systems, NLS) verschiedenster Funktionalität (z. B. zur Beantwortung beliebiger Fragen oder zur Generierung komplexer Texte) intensiv geforscht, auch wenn die hoch gesteckten Ziele von einst längst nicht erreicht sind (und deshalb entsprechend "heruntergefahren" wurden). Wo die maschinelle Sprachverarbeitung heute steht, ist allerdings angesichts der vielfältigen Aktivitäten in der Computerlinguistik und Sprachtechnologie weder offensichtlich noch leicht in Erfahrung zu bringen (für Studierende des Fachs und erst recht für Laien). Ein Ziel dieses Buches ist, es, die aktuelle Literaturlage in dieser Hinsicht zu verbessern, indem spezifisch systembezogene Aspekte der Computerlinguistik als Überblick über die Sprachtechnologie zusammengetragen werden.
  6. Vonhoegen, H.: Einstieg in XML (2002) 0.01
    0.006186443 = product of:
      0.012372886 = sum of:
        0.012372886 = product of:
          0.024745772 = sum of:
            0.024745772 = weight(_text_:22 in 4002) [ClassicSimilarity], result of:
              0.024745772 = score(doc=4002,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1354154 = fieldWeight in 4002, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4002)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: XML Magazin und Web Services 2003, H.1, S.14 (S. Meyen): "Seit dem 22. Februar 1999 ist das Resource Description Framework (RDF) als W3C-Empfehlung verfügbar. Doch was steckt hinter diesem Standard, der das Zeitalter des Semantischen Webs einläuten soll? Was RDF bedeutet, wozu man es einsetzt, welche Vorteile es gegenüber XML hat und wie man RDF anwendet, soll in diesem Artikel erläutert werden. Schlägt man das Buch auf und beginnt, im EinleitungsKapitel zu schmökern, fällt sogleich ins Auge, dass der Leser nicht mit Lektionen im Stile von "bei XML sind die spitzen Klammern ganz wichtig" belehrt wird, obgleich es sich um ein Buch für Anfänger handelt. Im Gegenteil: Es geht gleich zur Sache und eine gesunde Mischung an Vorkenntnissen wird vorausgesetzt. Wer sich heute für XML interessiert, der hat ja mit 99-prozentiger Wahrscheinlichkeit schon seine einschlägigen Erfahrungen mit HTML und dem Web gemacht und ist kein Newbie in dem Reich der spitzen Klammern und der (einigermaßen) wohlformatierten Dokumente. Und hier liegt eine deutliche Stärke des Werkes Helmut Vonhoegens, der seinen Einsteiger-Leser recht gut einzuschätzen weiß und ihn daher praxisnah und verständlich ans Thema heranführt. Das dritte Kapitel beschäftigt sich mit der Document Type Definition (DTD) und beschreibt deren Einsatzziele und Verwendungsweisen. Doch betont der Autor hier unablässig die Begrenztheit dieses Ansatzes, welche den Ruf nach einem neuen Konzept deutlich macht: XML Schema, welches er im folgenden Kapitel darstellt. Ein recht ausführliches Kapitel widmet sich dann dem relativ aktuellen XML Schema-Konzept und erläutert dessen Vorzüge gegenüber der DTD (Modellierung komplexer Datenstrukturen, Unterstützung zahlreicher Datentypen, Zeichenbegrenzungen u.v.m.). XML Schema legt, so erfährt der Leser, wie die alte DTD, das Vokabular und die zulässige Grammatik eines XML-Dokuments fest, ist aber seinerseits ebenfalls ein XML-Dokument und kann (bzw. sollte) wie jedes andere XML auf Wohlgeformtheit überprüft werden. Weitere Kapitel behandeln die Navigations-Standards XPath, XLink und XPointer, Transformationen mit XSLT und XSL und natürlich die XML-Programmierschnittstellen DOM und SAX. Dabei kommen verschiedene Implementierungen zum Einsatz und erfreulicherweise werden Microsoft-Ansätze auf der einen und Java/Apache-Projekte auf der anderen Seite in ungefähr vergleichbarem Umfang vorgestellt. Im letzten Kapitel schließlich behandelt Vonhoegen die obligatorischen Web Services ("Webdienste") als Anwendungsfall von XML und demonstriert ein kleines C#- und ASP-basiertes Beispiel (das Java-Äquivalent mit Apache Axis fehlt leider). "Einstieg in XML" präsentiert seinen Stoff in klar verständlicher Form und versteht es, seine Leser auf einem guten Niveau "abzuholen". Es bietet einen guten Überblick über die Grundlagen von XML und kann - zumindest derzeit noch - mit recht hoher Aktualität aufwarten."
  7. Antoniou, G.; Harmelen, F. van: ¬A semantic Web primer (2004) 0.01
    0.0058946493 = product of:
      0.011789299 = sum of:
        0.011789299 = product of:
          0.023578597 = sum of:
            0.023578597 = weight(_text_:systems in 468) [ClassicSimilarity], result of:
              0.023578597 = score(doc=468,freq=6.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.14702557 = fieldWeight in 468, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=468)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The development of the Semantic Web, with machine-readable content, has the potential to revolutionise the World Wide Web and its use. A Semantic Web Primer provides an introduction and guide to this emerging field, describing its key ideas, languages and technologies. Suitable for use as a textbook or for self-study by professionals, it concentrates on undergraduate-level fundamental concepts and techniques that will enable readers to proceed with building applications on their own. It includes exercises, project descriptions and annotated references to relevant online materials. A Semantic Web Primer is the only available book on the Semantic Web to include a systematic treatment of the different languages (XML, RDF, OWL and rules) and technologies (explicit metadata, ontologies and logic and interference) that are central to Semantic Web development. The book also examines such crucial related topics as ontology engineering and application scenarios. After an introductory chapter, topics covered in succeeding chapters include XML and related technologies that support semantic interoperability; RDF and RDF Schema, the standard data model for machine-processable semantics; and OWL, the W3C-approved standard for a Web ontology language more extensive than RDF Schema; rules, both monotonic and nonmonotonic, in the framework of the Semantic Web; selected application domains and how the Semantic Web would benefit them; the development of ontology-based systems; and current debates on key issues and predictions for the future.
    Footnote
    The chapter on ontology engineering describes the development of ontology-based systems for the Web using manual and semiautomatic methods. Ontology is a concept similar to taxonomy. As stated in the introduction, ontology engineering deals with some of the methodological issues that arise when building ontologies, in particular, con-structing ontologies manually, reusing existing ontologies. and using semiautomatic methods. A medium-scale project is included at the end of the chapter. Overall the book is a nice introduction to the key components of the Semantic Web. The reading is quite pleasant, in part due to the concise layout that allows just enough content per page to facilitate readers' comprehension. Furthermore, the book provides a large number of examples, code snippets, exercises, and annotated online materials. Thus, it is very suitable for use as a textbook for undergraduates and low-grade graduates, as the authors say in the preface. However, I believe that not only students but also professionals in both academia and iudustry will benefit from the book. The authors also built an accompanying Web site for the book at http://www.semanticwebprimer.org. On the main page, there are eight tabs for each of the eight chapters. For each tabm the following sections are included: overview, example, presentations, problems and quizzes, errata, and links. These contents will greatly facilitate readers: for example, readers can open the listed links to further their readings. The vacancy of the errata sections also proves the quality of the book."
    Series
    Cooperative information systems
  8. Rowley, J.E.; Hartley, R.: Organizing knowledge : an introduction to managing access to information (2008) 0.01
    0.0057755527 = product of:
      0.011551105 = sum of:
        0.011551105 = product of:
          0.02310221 = sum of:
            0.02310221 = weight(_text_:systems in 2464) [ClassicSimilarity], result of:
              0.02310221 = score(doc=2464,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.14405504 = fieldWeight in 2464, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=2464)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The fourth edition of this standard student text, "Organizing Knowledge", incorporates extensive revisions reflecting the increasing shift towards a networked and digital information environment, and its impact on documents, information, knowledge, users and managers.Offering a broad-based overview of the approaches and tools used in the structuring and dissemination of knowledge, it is written in an accessible style and well illustrated with figures and examples. The book has been structured into three parts and twelve chapters and has been thoroughly updated throughout.Part I discusses the nature, structuring and description of knowledge. Part II, with its five chapters, lies at the core of the book focusing as it does on access to information. Part III explores different types of knowledge organization systems and considers some of the management issues associated with such systems. Each chapter includes learning objectives, a chapter summary and a list of references for further reading.This is a key introductory text for undergraduate and postgraduate students of information management.
  9. Broughton, V.: Essential classification (2004) 0.01
    0.0054452433 = product of:
      0.010890487 = sum of:
        0.010890487 = product of:
          0.021780973 = sum of:
            0.021780973 = weight(_text_:systems in 2824) [ClassicSimilarity], result of:
              0.021780973 = score(doc=2824,freq=8.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1358164 = fieldWeight in 2824, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2824)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Classification is a crucial skill for all information workers involved in organizing collections, but it is a difficult concept to grasp - and is even more difficult to put into practice. Essential Classification offers full guidance an how to go about classifying a document from scratch. This much-needed text leads the novice classifier step by step through the basics of subject cataloguing, with an emphasis an practical document analysis and classification. It deals with fundamental questions of the purpose of classification in different situations, and the needs and expectations of end users. The novice is introduced to the ways in which document content can be assessed, and how this can best be expressed for translation into the language of specific indexing and classification systems. The characteristics of the major general schemes of classification are discussed, together with their suitability for different classification needs.
    Footnote
    Rez. in: KO 32(2005) no.1, S.47-49 (M. Hudon): "Vanda Broughton's Essential Classification is the most recent addition to a very small set of classification textbooks published over the past few years. The book's 21 chapters are based very closely an the cataloguing and classification module at the School of Library, Archive, and Information studies at University College, London. The author's main objective is clear: this is "first and foremost a book about how to classify. The emphasis throughout is an the activity of classification rather than the theory, the practical problems of the organization of collections, and the needs of the users" (p. 1). This is not a theoretical work, but a basic course in classification and classification scheme application. For this reviewer, who also teaches "Classification 101," this is also a fascinating peek into how a colleague organizes content and structures her course. "Classification is everywhere" (p. 1): the first sentence of this book is also one of the first statements in my own course, and Professor Broughton's metaphors - the supermarket, canned peas, flowers, etc. - are those that are used by our colleagues around the world. The combination of tone, writing style and content display are reader-friendly; they are in fact what make this book remarkable and what distinguishes it from more "formal" textbooks, such as The Organization of Information, the superb text written and recently updated (2004) by Professor Arlene Taylor (2nd ed. Westport, Conn.: Libraries Unlimited, 2004). Reading Essential Classification, at times, feels like being in a classroom, facing a teacher who assures you that "you don't need to worry about this at this stage" (p. 104), and reassures you that, although you now speed a long time looking for things, "you will soon speed up when you get to know the scheme better" (p. 137). This teacher uses redundancy in a productive fashion, and she is not afraid to express her own opinions ("I think that if these concepts are helpful they may be used" (p. 245); "It's annoying that LCC doesn't provide clearer instructions, but if you keep your head and take them one step at a time [i.e. the tables] they're fairly straightforward" (p. 174)). Chapters 1 to 7 present the essential theoretical concepts relating to knowledge organization and to bibliographic classification. The author is adept at making and explaining distinctions: known-item retrieval versus subject retrieval, personal versus public/shared/official classification systems, scientific versus folk classification systems, object versus aspect classification systems, semantic versus syntactic relationships, and so on. Chapters 8 and 9 discuss the practice of classification, through content analysis and subject description. A short discussion of difficult subjects, namely the treatment of unique concepts (persons, places, etc.) as subjects seems a little advanced for a beginners' class.
  10. Anderson, R.; Birbeck, M.; Kay, M.; Livingstone, S.; Loesgen, B.; Martin, D.; Mohr, S.; Ozu, N.; Peat, B.; Pinnock, J.; Stark, P.; Williams, K.: XML professionell : behandelt W3C DOM, SAX, CSS, XSLT, DTDs, XML Schemas, XLink, XPointer, XPath, E-Commerce, BizTalk, B2B, SOAP, WAP, WML (2000) 0.01
    0.0053026653 = product of:
      0.010605331 = sum of:
        0.010605331 = product of:
          0.021210661 = sum of:
            0.021210661 = weight(_text_:22 in 729) [ClassicSimilarity], result of:
              0.021210661 = score(doc=729,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.116070345 = fieldWeight in 729, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=729)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 6.2005 15:12:11
  11. Schwartz, C.: Sorting out the Web : approaches to subject access (2001) 0.00
    0.0048129605 = product of:
      0.009625921 = sum of:
        0.009625921 = product of:
          0.019251842 = sum of:
            0.019251842 = weight(_text_:systems in 2050) [ClassicSimilarity], result of:
              0.019251842 = score(doc=2050,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.12004587 = fieldWeight in 2050, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=2050)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: KO 50(2003) no.1, S.45-46 (L.M. Given): "In her own preface to this work, the author notes her lifelong fascination with classification and order, as well as her more recent captivation with the Internet - a place of "chaos in need of organization" (xi). Sorting out the Web examines current efforts to organize the Web and is well-informed by the author's academic and professional expertise in information organization, information retrieval, and Web development. Although the book's level and tone are particularly relevant to a student audience (or others interested in Web-based subject access at an introductory level), it will also appeal to information professionals developing subject access systems across a range of information contexts. There are six chapters in the book, each describing and analyzing one core concept related to the organization of Web content. All topics are presented in a manner ideal for newcomers to the area, with clear definitions, examples, and visuals that illustrate the principles under discussion. The first chapter provides a brief introduction to developments in information technology, including an historical overview of information services, users' needs, and libraries' responses to the Internet. Chapter two introduces metadata, including core concepts and metadata formats. Throughout this chapter the author presents a number of figures that aptly illustrate the application of metadata in HTML, SGML, and MARC record environments, and the use of metadata tools (e.g., XML, RDF). Chapter three begins with an overview of classification theory and specific schemes, but the author devotes most of the discussion to the application of classification systems in the Web environment (e.g., Dewey, LCC, UDC). Web screen captures illustrate the use of these schemes for information sources posted to sites around the world. The chapter closes with a discussion of the future of classification; this is a particularly useful section as the author presents a listing of core journal and conference venues where new approaches to Web classification are explored. In chapter four, the author extends the discussion of classification to the use of controlled vocabularies. As in the first few chapters, the author first presents core background material, including reasons to use controlled vocabularies and the differences between preand post-coordinate indexing, and then discusses the application of specific vocabularies in the Web environment (e.g., Infomine's use of LCSH). The final section of the chapter explores failure in subject searching and the limitations of controlled vocabularies for the Web. Chapter five discusses one of the most common and fast-growing topics related to subject access an the Web: search engines. The author presents a clear definition of the term that encompasses classified search lists (e.g., Yahoo) and query-based engines (e.g., Alta Vista). In addition to historical background an the development of search engines, Schwartz also examines search service types, features, results, and system performance.
  12. Chu, H.: Information representation and retrieval in the digital age (2010) 0.00
    0.0047157193 = product of:
      0.0094314385 = sum of:
        0.0094314385 = product of:
          0.018862877 = sum of:
            0.018862877 = weight(_text_:systems in 92) [ClassicSimilarity], result of:
              0.018862877 = score(doc=92,freq=6.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.11762045 = fieldWeight in 92, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.015625 = fieldNorm(doc=92)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Information representation and retrieval : an overview -- Information representation I : basic approaches -- Information representation II : related topics -- Language in information representation and retrieval -- Retrieval techniques and query representation -- Retrieval approaches -- Information retrieval models -- Information retrieval systems -- Retrieval of information unique in content or format -- The user dimension in information representation and retrieval -- Evaluation of information representation and retrieval -- Artificial intelligence in information representation and retrieval.
    LCSH
    Information storage and retrieval systems
    Subject
    Information storage and retrieval systems
  13. Batley, S.: Classification in theory and practice (2005) 0.00
    0.0038503686 = product of:
      0.007700737 = sum of:
        0.007700737 = product of:
          0.015401474 = sum of:
            0.015401474 = weight(_text_:systems in 1170) [ClassicSimilarity], result of:
              0.015401474 = score(doc=1170,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.096036695 = fieldWeight in 1170, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1170)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: KO 31(2005), no.4, S.257-258 (B.H. Kwasnik): "According to the author, there have been many books that address the general topic of cataloging and indexing, but relatively few that focus solely an classification. This Compact and clearly written book promises to "redress the balance," and it does. From the outset the author identifies this as a textbook - one that provides theoretical underpinnings, but has as its main goal the provision of "practical advice and the promotion of practical skills" (p. vii). This is a book for the student, or for the practitioner who would like to learn about other applied bibliographic classification systems, and it considers classification as a pragmatic solution to a pragmatic problem: that of organizing materials in a collection. It is not aimed at classification researchers who study the nature of classification per se, nor at those whose primary interest is in classification as a manifestation of human cultural, social, and political values. Having said that, the author's systematic descriptions provide an exceptionally lucid and conceptually grounded description of the prevalent bibliographic classification schemes as they exist, and thus, the book Could serve as a baseline for further comparative analyses or discussions by anyone pursuing such investigations. What makes this book so appealing, even to someone who has immersed herself in this area for many years, as a practicing librarian, a teacher, and a researcher? I especially liked the conceptual framework that supported the detailed descriptions. The author defines and provides examples of the fundamental concepts of notation and the types of classifications, and then develops the notions of conveying order, brevity and simplicity, being memorable, expressiveness, flexibility and hospitality. These basic terms are then used throughout to analyze and comment an the classifications described in the various chapters: DDC, LCC, UDC, and some well-chosen examples of facetted schemes (Colon, Bliss, London Classification of Business Studies, and a hypothetical library of photographs).
    The heart of the book lies in its exceptionally clear and well illustrated explanation of each of the classification schemes. These are presented comprehensively, but also in gratifying detail, down to the meaning of the various enigmatic notes and notations, such as "config" or "class elsewhere" notes, each simply explained, as if a teacher were standing over your shoulder leading you through it. Such attention at such a fine level may seem superfluous or obvious to a seasoned practitioner, but it is in dealing with such enigmatic details that we find students getting discouraged and confused. That is why I think this would be an excellent text, especially as a book to hold in one hand and the schedules themselves in the other. While the examples throughout and the practical exercises at the end of each chapter are slanted towards British topics, they are aptly Chosen and should present no problem of understanding to a student anywhere. As mentioned, this is an unabashedly practical book, focusing an classification as it has been and is presently applied in libraries for maintaining a "useful book order." It aims to develop those skills that would allow a student to learn how it is done from a procedural rather than a critical perspective. At times, though, one wishes for a bit more of a critical approach - one that would help a student puzzle through some of the ambiguities and issues that the practice of classification in an increasingly global rather than local environment entails. While there is something to be said for a strong foundation in existing practice (to understand from whence it all came), the author essentially accepts the status quo, and ventures almost timidly into any critique of the content and practice of existing classification schemes. This lack of a critical analysis manifests itself in several ways: - The content of the classification schemes as described in this book is treated as fundamentally "correct" or at least "given." This is not to say the author doesn't recognize anomalies and shortcomings, but that her approach is to work with what is there. Where there are logical flaws in the knowledge representation structures, the author takes the approach that there are always tradeoffs, and one must simply do the best one can. This is certainly true for most people working in libraries where the choice of scheme is not controlled by the classifier, and it is a wonderful skill indeed to be able to organize creatively and carefully despite imperfect systems. The approach is less convincing, however, when it is also applied to emerging or newly developed schemes, such as those proposed for organizing electronic resources. Here, the author could have been a bit braver in at least encouraging less normative approaches. - There is also a lingering notion that classification is a precise science. For example the author states (p. 13): Hospitality is the ability to accommodate new topics and concepts in their correct place in the schedules ... Perfect hospitality world mean that every new subject could be accommodated in the most appropriate place in the schedules. In practice, schemes do manage to fit new subjects in, but not necessarily in their most appropriate place. It world have been helpful to acknowledge that for many complex subjects there is no one appropriate place. The author touches an this dilemma, but in passing, and not usually when she is providing practical pointers.
  14. Theory of subject analysis : A sourcebook (1985) 0.00
    0.0034032771 = product of:
      0.0068065543 = sum of:
        0.0068065543 = product of:
          0.013613109 = sum of:
            0.013613109 = weight(_text_:systems in 3622) [ClassicSimilarity], result of:
              0.013613109 = score(doc=3622,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.08488525 = fieldWeight in 3622, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=3622)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Eine exzellente (und durch die Herausgeber kommentierte) Zusammenstellung und Wiedergabe folgender Originalbeiträge: CUTTER, C.A.: Subjects; DEWEY, M.: Decimal classification and relativ index: introduction; HOPWOOD, H.V.: Dewey expanded; HULME, E.W.: Principles of book classification; KAISER, J.O.: Systematic indexing; MARTEL, C.: Classification: a brief conspectus of present day library practice; BLISS, H.E.: A bibliographic classification: principles and definitions; RANGANATHAN, S.R.: Facet analysis: fundamental categories; PETTEE, J.: The subject approach to books and the development of the dictionary catalog; PETTEE, J.: Fundamental principles of the dictionary catalog; PETTEE, J.: Public libraries and libraries as purveyors of information; HAYKIN, D.J.: Subject headings: fundamental concepts; TAUBE, M.: Functional approach to bibliographic organization: a critique and a proposal; VICKERY, B.C.: Systematic subject indexing; FEIBLEMAN, J.K.: Theory of integrative levels; GARFIELD, E.: Citation indexes for science; CRG: The need for a faceted classification as the basis of all methods of information retrieval; LUHN, H.P.: Keyword-in-context index for technical literature; COATES, E.J.: Significance and term relationship in compound headings; FARRADANE, J.E.L.: Fundamental fallacies and new needs in classification; FOSKETT, D.J.: Classification and integrative levels; CLEVERDON, C.W. u. J. MILLS: The testing of index language devices; MOOERS, C.N.: The indexing language of an information retrieval system; NEEDHAM, R.M. u. K. SPARCK JONES: Keywords and clumps; ROLLING, L.: The role of graphic display of concept relationships in indexing and retrieval vocabularies; BORKO, H.: Research in computer based classification systems; WILSON, P.: Subjects and the sense of position; LANCASTER, F.W.: Evaluating the performance of a large computerized information system; SALTON, G.: Automatic processing of foreign language documents; FAIRTHORNE, R.A.: Temporal structure in bibliographic classification; AUSTIN, D. u. J.A. DIGGER: PRECIS: The Preserved Context Index System; FUGMANN, R.: The complementarity of natural and indexing languages
  15. Grundlagen der praktischen Information und Dokumentation (2004) 0.00
    0.0034032771 = product of:
      0.0068065543 = sum of:
        0.0068065543 = product of:
          0.013613109 = sum of:
            0.013613109 = weight(_text_:systems in 693) [ClassicSimilarity], result of:
              0.013613109 = score(doc=693,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.08488525 = fieldWeight in 693, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=693)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Jiri Panyr: Technische Redaktion Wolfgang F. Finke: E-Learning Harald H. Zimmermann: Maschinelle und Computergestützte Übersetzung Franziskus Geeb und Ulrike Spree: Wörterbücher und Enzyklopädien Angelika Menne-Haritz: Archive Hans-Christoph Hobohm: Bibliotheken Günter Peters: Medien, Medienwirtschaft Ulrich Riehm: Buchhandel Helmut Wittenzellner: Transformationsprozesse für die Druckbranche auf dem Weg zum Mediendienstleister Dietmar Strauch: Verlagswesen Ulrich Riehm, Knud Böhle und Bernd Wingert: Elektronisches Publizieren Heike Andermann: Initiativen zur Reformierung des Systems wissenschaftlicher Kommunikation Ute Schwens und Hans Liegmann: Langzeitarchivierung digitaler Ressourcen Achim OBwald: Document Delivery/ Dokumentlieferung Willi Bredemeier und Patrick Müller: Informationswirtschaft Martin Michelson: Wirtschaftsinformation Ulrich Kämper: Chemie-Information Wilhelm Gaus: Information und Dokumentation in der Medizin Gottfried Herzog und Hans Jörg Wiesner: Normung Jürgen Krause: Standardisierung und Heterogenität Reinhard Schramm: Patentinformation Wolfgang Semar: E-Commerce Wolfgang Semar: Kryptografie Knud Böhle: Elektronische Zahlungssysteme Herbert Stoyan: Information in der Informatik Gerhard Roth und Christian Eurich: Der Begriff der Information in der Neurobiologie Margarete Boos: Information in der Psychologie Harald H. Zimmermann: Information in der Sprachwissenschaft Ulrich Glowalla: Information und Lernen Eric Schoop: Information in der Betriebswirtschaft: ein neuer Produktionsfaktor? Gerhard Vowe: Der Informationsbegriff in der Politikwissenschaft - eine historische und systematische Bestandsaufnahme Jürgen Krause: Information in den Sozialwissenschaften Holger Lyre: Information in den Naturwissenschaften Norbert Henrichs: Information in der Philosophie
  16. Broughton, V.: Essential thesaurus construction (2006) 0.00
    0.0027226217 = product of:
      0.0054452433 = sum of:
        0.0054452433 = product of:
          0.010890487 = sum of:
            0.010890487 = weight(_text_:systems in 2924) [ClassicSimilarity], result of:
              0.010890487 = score(doc=2924,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.0679082 = fieldWeight in 2924, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2924)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Many information professionals working in small units today fail to find the published tools for subject-based organization that are appropriate to their local needs, whether they are archivists, special librarians, information officers, or knowledge or content managers. Large established standards for document description and organization are too unwieldy, unnecessarily detailed, or too expensive to install and maintain. In other cases the available systems are insufficient for a specialist environment, or don't bring things together in a helpful way. A purpose built, in-house system would seem to be the answer, but too often the skills necessary to create one are lacking. This practical text examines the criteria relevant to the selection of a subject-management system, describes the characteristics of some common types of subject tool, and takes the novice step by step through the process of creating a system for a specialist environment. The methodology employed is a standard technique for the building of a thesaurus that incidentally creates a compatible classification or taxonomy, both of which may be used in a variety of ways for document or information management. Key areas covered are: What is a thesaurus? Tools for subject access and retrieval; what a thesaurus is used for? Why use a thesaurus? Examples of thesauri; the structure of a thesaurus; thesaural relationships; practical thesaurus construction; the vocabulary of the thesaurus; building the systematic structure; conversion to alphabetic format; forms of entry in the thesaurus; maintaining the thesaurus; thesaurus software; and; the wider environment. Essential for the practising information professional, this guide is also valuable for students of library and information science.

Years

Languages

  • e 42
  • d 14

Types

  • m 48
  • s 6
  • a 4
  • el 2
  • More… Less…

Subjects

Classifications