Search (206 results, page 11 of 11)

  • × theme_ss:"Information"
  1. Ingwersen, P.; Järvelin, K.: ¬The turn : integration of information seeking and retrieval in context (2005) 0.00
    0.0048129605 = product of:
      0.009625921 = sum of:
        0.009625921 = product of:
          0.019251842 = sum of:
            0.019251842 = weight(_text_:systems in 1323) [ClassicSimilarity], result of:
              0.019251842 = score(doc=1323,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.12004587 = fieldWeight in 1323, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1323)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Turn analyzes the research of information seeking and retrieval (IS&R) and proposes a new direction of integrating research in these two areas: the fields should turn off their separate and narrow paths and construct a new avenue of research. An essential direction for this avenue is context as given in the subtitle Integration of Information Seeking and Retrieval in Context. Other essential themes in the book include: IS&R research models, frameworks and theories; search and works tasks and situations in context; interaction between humans and machines; information acquisition, relevance and information use; research design and methodology based on a structured set of explicit variables - all set into the holistic cognitive approach. The present monograph invites the reader into a construction project - there is much research to do for a contextual understanding of IS&R. The Turn represents a wide-ranging perspective of IS&R by providing a novel unique research framework, covering both individual and social aspects of information behavior, including the generation, searching, retrieval and use of information. Regarding traditional laboratory information retrieval research, the monograph proposes the extension of research toward actors, search and work tasks, IR interaction and utility of information. Regarding traditional information seeking research, it proposes the extension toward information access technology and work task contexts. The Turn is the first synthesis of research in the broad area of IS&R ranging from systems oriented laboratory IR research to social science oriented information seeking studies. TOC:Introduction.- The Cognitive Framework for Information.- The Development of Information Seeking Research.- Systems-Oriented Information Retrieval.- Cognitive and User-Oriented Information Retrieval.- The Integrated IS&R Research Framework.- Implications of the Cognitive Framework for IS&R.- Towards a Research Program.- Conclusion.- Definitions.- References.- Index.
  2. Bates, M.J.: Information and knowledge : an evolutionary framework for information science (2005) 0.00
    0.004764588 = product of:
      0.009529176 = sum of:
        0.009529176 = product of:
          0.019058352 = sum of:
            0.019058352 = weight(_text_:systems in 158) [ClassicSimilarity], result of:
              0.019058352 = score(doc=158,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.118839346 = fieldWeight in 158, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=158)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Many definitions of information have been suggested throughout the history of information science. In this essay, the objective has been to provide a definition that is usable for the physical, biological and social meanings of the term, covering the various senses important to our field. Information has been defined as the pattern of organization of matter and energy. Information is everywhere except where there is total entropy. Living beings process, organize and ascribe meaning to information. Some pattern of organization that has been given meaning by a living being has been defined as information 2, while the above definition is information 1, when it is desirable to make the distinction. Knowledge has been defined as information given meaning and integrated with other contents of understanding. Meaning itself is rooted ultimately in biological survival. In the human being, extensive processing space in the brain has made possible the generation of extremely rich cultural and interpersonal meaning, which imbues human interactions. (In the short term, not all meaning that humans ascribe to information is the result of evolutionary processes. Our extensive brain processing space also enables us to hold beliefs for the short term that, over the long term, may actually be harmful to survival.) Data 1 has been defined as that portion of the entire information environment (including internal inputs) that is taken in, or processed, by an organism. Data 2 is that information that is selected or generated and used by human beings for research or other social purposes. This definition of information is not reductive--that is, it does not imply that information is all and only the most microscopic physical manifestation of matter and energy. Information principally exists for organisms at many emergent levels. A human being, for example, can see this account as tiny marks on a piece of paper, as letters of the alphabet, as words of the English language, as a sequence of ideas, as a genre of publication, as a philosophical position and so on. Thus, patterns of organization are not all equal in the life experience of animals. Some types of patterns are more important, some less so. Some parts of patterns are repetitive and can be compressed in mental storage. As mental storage space is generally limited and its maintenance costly to an animal, adaptive advantage accrues to the species that develops efficient storage. As a result, many species process elements of their environment in ways efficient and effective for their particular purposes; that is, as patterns of organization that are experienced as emergent wholes. We see a chair as a chair, not only as a pattern of light and dark. We see a string of actions by a salesperson as bait and switch, not just as a sequence of actions. We understand a series of statements as parts of a whole philosophical argument, not just as a series of sentences. The understanding of information embraced here recognizes and builds on the idea that these emergent wholes are efficient for storage and effective for the life purposes of human beings as successful animals (to date) on our planet. Thus, people experience their lives in terms of these emergent objects and relations, for the most part. Likewise, information is stored in retrieval systems in such a way that it can be represented to human beings in their preferred emergent forms, rather than in the pixels or bits in which the information is actually encoded within the information system.
  3. Fuchs, C.; Hofkirchner, W.: ¬Ein einheitlicher Informationsbegriff für eine einheitliche Informationswissenschaft (2002) 0.00
    0.004764588 = product of:
      0.009529176 = sum of:
        0.009529176 = product of:
          0.019058352 = sum of:
            0.019058352 = weight(_text_:systems in 137) [ClassicSimilarity], result of:
              0.019058352 = score(doc=137,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.118839346 = fieldWeight in 137, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=137)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Die Bedeutung von Information im Sinn des lateinischen "informare" als Gestaltung und Formung ist heute fast vergessen. Eine evolutionäre Theorie, die Information und Selbstorganisation in einem gemeinsamen Ansatz vereint, revitalisiert dieses Verständnis, indem sie dem Technikreduktionismus und der Verdinglichung in der Informatik entgegenwirkt. Weiters kann sie angesichts der globalen Probleme, die Überlebensprobleme der Menschheit sind, zu einem Verständnis der geschichtlichen Entwicklung im Sinn einer sozialen Systemgestaltung beitragen. Es wird eine Einteilung von Informationsbegriffen vorgestellt, die als eine Kategorie reduktionistische Informationsbegriffe umfaßt, die Information als Ding betrachten, das in allen Systemen und Kontexten das gleiche bedeutet. Eine andere Kategorie stellen antisynonymische Informationsbegriffe dar, die davon ausgehen, daß Systeme die Eigenschaft haben, Information autonom, unabhängig von ihrer Umwelt, erzeugen zu können. Dabei kann ein projektionistischer Analogismus identifiziert werden, der vom Informationsgeschehen eines Systems auf das Informationsgeschehen anderer Systeme schließt, und eine dualistische/pluralistische Äquivokation, die unüberbrückbare Unterschiede im Informationsgeschehen unterschiedlicher Systemtypen propagiert. Die dritte Kategorie stellen dialektische Ansätze dar, die davon ausgehen, daß Information in verschiedenen Systemarten sowohl gleiches als auch unterschiedliches bedeutet.
  4. ¬Die Zukunft des Wissens : Vorträge und Kolloquien: XVIII. Deutscher Kongress für Philosophie, Konstanz, 4. - 8. Oktober 1999 (2000) 0.00
    0.0044188877 = product of:
      0.008837775 = sum of:
        0.008837775 = product of:
          0.01767555 = sum of:
            0.01767555 = weight(_text_:22 in 733) [ClassicSimilarity], result of:
              0.01767555 = score(doc=733,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.09672529 = fieldWeight in 733, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=733)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 6.2005 15:30:21
  5. Capurro, R.; Hjoerland, B.: ¬The concept of information (2002) 0.00
    0.0040839324 = product of:
      0.008167865 = sum of:
        0.008167865 = product of:
          0.01633573 = sum of:
            0.01633573 = weight(_text_:systems in 5079) [ClassicSimilarity], result of:
              0.01633573 = score(doc=5079,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1018623 = fieldWeight in 5079, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=5079)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Discussions about the concept of information in other disciplines are very important for IS because many theories and approaches in IS have their origins elsewhere (see the section "Information as an Interdisciplinary Concept" in this chapter). The epistemological concept of information brings into play nonhuman information processes, particularly in physics and biology. And vice versa: the psychic and sociological processes of selection and interpretation may be considered using objective parameters, leaving aside the semantic dimension, or more precisely, by considering objective or situational parameters of interpretation. This concept can be illustrated also in physical terms with regard to release mechanisms, as we suggest. Our overview of the concept of information in the natural sciences as well as in the humanities and social sciences cannot hope to be comprehensive. In most cases, we can refer only to fragments of theories. However, the reader may wish to follow the leads provided in the bibliography. Readers interested primarily in information science may derive most benefit from the section an "Information in Information Science," in which we offer a detailed explanation of diverse views and theories of information within our field; supplementing the recent ARIST chapter by Cornelius (2002). We show that the introduction of the concept of information circa 1950 to the domain of special librarianship and documentation has in itself had serious consequences for the types of knowledge and theories developed in our field. The important question is not only what meaning we give the term in IS, but also how it relates to other basic terms, such as documents, texts, and knowledge. Starting with an objectivist view from the world of information theory and cybernetics, information science has turned to the phenomena of relevance and interpretation as basic aspects of the concept of information. This change is in no way a turn to a subjectivist theory, but an appraisal of different perspectives that may determine in a particular context what is being considered as informative, be it a "thing" (Buckland, 1991b) or a document. Different concepts of information within information science reflect tensions between a subjective and an objective approach. The concept of interpretation or selection may be considered to be the bridge between these two poles. It is important, however, to consider the different professions involved with the interpretation and selection of knowledge. The most important thing in IS (as in information policy) is to consider information as a constitutive forte in society and, thus, recognize the teleological nature of information systems and services (Braman, 1989).
  6. Burnett, R.: How images think (2004) 0.00
    0.0038503686 = product of:
      0.007700737 = sum of:
        0.007700737 = product of:
          0.015401474 = sum of:
            0.015401474 = weight(_text_:systems in 3884) [ClassicSimilarity], result of:
              0.015401474 = score(doc=3884,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.096036695 = fieldWeight in 3884, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.015625 = fieldNorm(doc=3884)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Moving an to virtual images, Burnett posits the existence of "microcultures": places where people take control of the means of creation and production in order to makes sense of their social and cultural experiences. Driven by the need for community, such microcultures generate specific images as part of a cultural movement (Burnett in fact argues that microcultures make it possible for a "small cinema of twenty-five seats to become part of a cultural movement" [p. 63]), where the process of visualization-which involves an awareness of the historical moment - is central to the info-world and imagescapes presented. The computer becomms an archive, a history. The challenge is not only of preserving information, but also of extracting information. Visualization increasingly involves this process of picking a "vantage point" in order to selectively assimilate the information. In virtual reality systems, and in the digital age in general, the distance between what is being pictured and what is experienced is overcome. Images used to be treated as opaque or transparent films among experience, perception, and thought. But, now, images are taken to another level, where the viewer is immersed in the image-experience. Burnett argues-though this is hardly a fresh insight-that "interactivity is only possible when images are the raw material used by participants to change if not transform the purpose of their viewing experience" (p. 90). He suggests that a work of art, "does not start its life as an image ... it gains the status of image when it is placed into a context of viewing and visualization" (p. 90). With simulations and cyberspace the viewing experience has been changed utterly. Burnett defines simulation as "mapping different realities into images that have an environmental, cultural, and social form" (p. 95). However, the emphasis in Burnett is significant-he suggests that interactivity is not achieved through effects, but as a result of experiences attached to stories. Narrative is not merely the effect of technology-it is as much about awareness as it is about Fantasy. Heightened awareness, which is popular culture's aim at all times, and now available through head-mounted displays (HMD), also involves human emotions and the subtleties of human intuition.
    Burnett's work is a useful basic primer an the new media. One of the chief attractions here is his clear language, devoid of the jargon of either computer sciences or advanced critical theory. This makes How Images Think an accessible introduction to digital cultures. Burnett explores the impact of the new technologies an not just image-making but an image-effects, and the ways in which images constitute our ecologies of identity, communication, and subject-hood. While some of the sections seem a little too basic (especially where he speaks about the ways in which we constitute an object as an object of art, see above), especially in the wake of reception theory, it still remains a starting point for those interested in cultural studies of the new media. The Gase Burnett makes out for the transformation of the ways in which we look at images has been strengthened by his attention to the history of this transformation-from photography through television and cinema and now to immersive virtual reality systems. Joseph Koemer (2004) has pointed out that the iconoclasm of early modern Europe actually demonstrates how idolatory was integral to the image-breakers' core belief. As Koerner puts it, "images never go away ... they persist and function by being perpetually destroyed" (p. 12). Burnett, likewise, argues that images in new media are reformed to suit new contexts of meaning-production-even when they appear to be destroyed. Images are recast, and the degree of their realism (or fantasy) heightened or diminished-but they do not "go away." Images do think, but-if I can parse Burnett's entire work-they think with, through, and in human intelligence, emotions, and intuitions. Images are uncanny-they are both us and not-us, ours and not-ours. There is, surprisingly, one factual error. Burnett claims that Myron Kreuger pioneered the term "virtual reality." To the best of my knowledge, it was Jaron Lanier who did so (see Featherstone & Burrows, 1998 [1995], p. 5)."

Years

Languages

Types

  • a 170
  • m 32
  • el 7
  • s 5
  • r 1
  • x 1
  • More… Less…

Subjects

Classifications