Search (3 results, page 1 of 1)

  • × theme_ss:"Klassifikationssysteme im Online-Retrieval"
  • × theme_ss:"Verbale Doksprachen im Online-Retrieval"
  1. Poynder, R.: Web research engines? (1996) 0.01
    0.011551105 = product of:
      0.02310221 = sum of:
        0.02310221 = product of:
          0.04620442 = sum of:
            0.04620442 = weight(_text_:systems in 5698) [ClassicSimilarity], result of:
              0.04620442 = score(doc=5698,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.28811008 = fieldWeight in 5698, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5698)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Describes the shortcomings of search engines for the WWW comparing their current capabilities to those of the first generation CD-ROM products. Some allow phrase searching and most are improving their Boolean searching. Few allow truncation, wild cards or nested logic. They are stateless, losing previous search criteria. Unlike the indexing and classification systems for today's CD-ROMs, those for Web pages are random, unstructured and of variable quality. Considers that at best Web search engines can only offer free text searching. Discusses whether automatic data classification systems such as Infoseek Ultra can overcome the haphazard nature of the Web with neural network technology, and whether Boolean search techniques may be redundant when replaced by technology such as the Euroferret search engine. However, artificial intelligence is rarely successful on huge, varied databases. Relevance ranking and automatic query expansion still use the same simple inverted indexes. Most Web search engines do nothing more than word counting. Further complications arise with foreign languages
  2. Tudhope, D.; Binding, C.; Blocks, D.; Cuncliffe, D.: Representation and retrieval in faceted systems (2003) 0.01
    0.009625921 = product of:
      0.019251842 = sum of:
        0.019251842 = product of:
          0.038503684 = sum of:
            0.038503684 = weight(_text_:systems in 2703) [ClassicSimilarity], result of:
              0.038503684 = score(doc=2703,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.24009174 = fieldWeight in 2703, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2703)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper discusses two inter-related themes: the retrieval potential of faceted thesauri and XML representations of fundamental facets. Initial findings are discussed from the ongoing 'FACET' project, in collaboration with the National Museum of Science and Industry. The work discussed seeks to take advantage of the structure afforded by faceted systems for multi-term queries and flexible matching, focusing in this paper an the Art and Architecture Thesaurus. A multi-term matching function yields ranked results with partial matches via semantic term expansion, based an a measure of distance over the semantic index space formed by thesaurus relationships. Our intention is to drive the system from general representations and a common query structure and interface. To this end, we are developing an XML representation based an work by the Classification Research Group an fundamental facets or categories. The XML representation maps categories to particular thesauri and hierarchies. The system interface, which is configured by the mapping, incorporates a thesaurus browser with navigation history together with a term search facility and drag and drop query builder.
  3. Olson, H.A.; Boll, J.J.: Subject analysis in online catalogs (2001) 0.01
    0.009529176 = product of:
      0.019058352 = sum of:
        0.019058352 = product of:
          0.038116705 = sum of:
            0.038116705 = weight(_text_:systems in 6113) [ClassicSimilarity], result of:
              0.038116705 = score(doc=6113,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23767869 = fieldWeight in 6113, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6113)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: Knowledge organization 28(2001) no.4, S.206-208 (C. Arsenault):"Overall, this is an excellent work, on an ever increasingly pertinent topic. This long-awaited second edition provides a thorough and comprehensive update of an already important text. I very highly recommend it to professionals and academics alike ; both neophytes and veterans will find it valuable. It is a fundamental work that cannot be ignored in the field of subject analysis and retrieval for all bibliographic systems, including online catalogs."