Search (10 results, page 1 of 1)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  • × year_i:[1980 TO 1990}
  1. Kumar, K.: Theoretical bases for universal classification systems (1982) 0.02
    0.02310221 = product of:
      0.04620442 = sum of:
        0.04620442 = product of:
          0.09240884 = sum of:
            0.09240884 = weight(_text_:systems in 34) [ClassicSimilarity], result of:
              0.09240884 = score(doc=34,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.57622015 = fieldWeight in 34, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.09375 = fieldNorm(doc=34)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Universal classification I: subject analysis and ordering systems. Proc. of the 4th Int. Study Conf. on Classification research, Augsburg, 28.6.-2.7.1982. Ed.: I. Dahlberg
  2. Oeser, E.: ¬The two systems of knowledge organization : on the characteristics and foundations of a universal background system (1982) 0.02
    0.019251842 = product of:
      0.038503684 = sum of:
        0.038503684 = product of:
          0.07700737 = sum of:
            0.07700737 = weight(_text_:systems in 50) [ClassicSimilarity], result of:
              0.07700737 = score(doc=50,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.48018348 = fieldWeight in 50, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.078125 = fieldNorm(doc=50)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Universal classification II: subject analysis and ordering systems. Proc. of the 4th Int. Study Conf. on Classification research, Augsburg, 28.6.-2.7.1982. Ed.: I. Dahlberg
  3. Beghtol, C.: Semantic validity : concepts of warrants in bibliographic classification systems (1986) 0.02
    0.016672583 = product of:
      0.033345167 = sum of:
        0.033345167 = product of:
          0.06669033 = sum of:
            0.06669033 = weight(_text_:systems in 3487) [ClassicSimilarity], result of:
              0.06669033 = score(doc=3487,freq=12.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.41585106 = fieldWeight in 3487, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3487)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper argues that the semantic axis of bibliographic classification systems can be found in the various warrants that have been used to justify the utility of classification systems. Classificationists, theorists, and critics have emphasized the syntactic aspects of classification theories and systems, but a number of semantic warrants can be identified. The evolution of four semantic warrants is traced through the development of twentieth-century classification theory: literary warrant, scientific/philosophical warrant, educational warrant, and cultural warrant. It is concluded that further examination of semantic warrants might make possible a rationalized approach to the creation of classification systems for particular uses. The attention of scholars on faceted schemes and classificatory structures had heretofore pulled our attention to the syntactic aspects (e.g., concept division and citation order), with semantics being considered more or less a question of the terms and their relationships and somewhat taken for granted, or at least construed as a unitary aspect. Attention is on the choice of the classes and their meaning, as well as their connection to the world, and not so much on their syntactic relationship. This notion is developed by providing an historical and conceptual overview of the various kinds of warrant discernible in working with bibliographic systems. In Beghtol's definition, warrant concerns more than just the selection of terms, but rather the mapping of a classification system to the context and uses.
  4. Austin, D.: Basic concept classes and primitive relations (1982) 0.02
    0.01633573 = product of:
      0.03267146 = sum of:
        0.03267146 = product of:
          0.06534292 = sum of:
            0.06534292 = weight(_text_:systems in 6580) [ClassicSimilarity], result of:
              0.06534292 = score(doc=6580,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.4074492 = fieldWeight in 6580, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6580)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Universal classification I: subject analysis and ordering systems. Proc. of the 4th Int. Study Conf. on Classification research, Augsburg, 28.6.-2.7.1982. Ed.: I. Dahlberg
  5. Foskett, D.J.; Bury, S.: Concept organisation and universal classification schemes (1982) 0.02
    0.01633573 = product of:
      0.03267146 = sum of:
        0.03267146 = product of:
          0.06534292 = sum of:
            0.06534292 = weight(_text_:systems in 17) [ClassicSimilarity], result of:
              0.06534292 = score(doc=17,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.4074492 = fieldWeight in 17, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.09375 = fieldNorm(doc=17)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Universal classification I: subject analysis and ordering systems. Proc. of the 4th Int. Study Conf. on Classification research, Augsburg, 28.6.-2.7.1982. Ed.: I. Dahlberg
  6. Classification Research Group: ¬The need for a faceted classification as the basis of all methods of information retrieval (1985) 0.01
    0.011551105 = product of:
      0.02310221 = sum of:
        0.02310221 = product of:
          0.04620442 = sum of:
            0.04620442 = weight(_text_:systems in 3640) [ClassicSimilarity], result of:
              0.04620442 = score(doc=3640,freq=16.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.28811008 = fieldWeight in 3640, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3640)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This classic paper presents the reasoning behind the research undertaken by the Classification Research Group in London, beginning in 1952 and producing, by 1955, the direction in which the Group's efforts were to go in the next thirty years. The Group's original purpose was to review the basic principles of indexing and classification without committing itself to any existing system. It began by uncovering - among existing systems such as indexes, classifications, automatic selectors, and other information retrieval systems - the steps in the process by means of which a search was performed. The Group went over this very carefully, identifying parts of the process each step of the way. At the time this work was performed systems such as UNITERMS, which did not survive, and other alphabetical coordinated indexes, mainly experimental, were a dime a dozen. Classification to most librarians meant Dewey and the Library of Congress systems, both of which have very serious shortcomings from an intellectual point of view. The Group finally came to the conclusion that a classification of knowledge was necessary for constructing any successful retrieval system. The question then became one of deciding which kind of classification system. The members identified ten unsatisfactory features of existing systems. In fact, they could not find any general class schedule that either was satisfactory or could be made satisfactory. Obviously then, a new system had to be made. The question became one of how to do this. Existing theories did not conform to the theory of logical division; dividing and subdividing an the basis of a single characteristic was not followed. Thus logical division, which is a "top down" method of analysis, was rejected. Generic relationships would have to be made by some other methodology. A "bottom-up" or inductive, as opposed to deductive, method was a possibility. The Group actually decided to use a system in which a given genus could be subdivided in more than one way, thus "yielding a homogeneous group of collateral species."
    The technique chosen was S. R. Ranganathan's facet analysis (q.v.). This method works from the bottom up: a term is categorized according to its parent class, as a kind, state, property, action, operation upon something, result of an Operation, agent, and so on. These modes of definition represent characteristics of division. Following the publication of this paper, the group worked for over ten years developing systems following this general pattern with various changes and experimental arrangements. Ranganathan's Colon Classification was the original of this type of method, but the Group rejected his contention that there are only five fundamental categories to be found in the knowledge base. They did, in fact, end up with varying numbers of categories in the experimental systems which they ultimately were to make. Notation was also recognized as a problem, being complex, illogical, lengthy, obscure and hard to understand. The Group tried to develop a rationale for notation, both as an ordering and as a finding device. To describe and represent a class, a notation could be long, but as a finding device, brevity would be preferable. The Group was to experiment with this aspect of classification and produce a number of interesting results. The Classification Research Group began meeting informally to discuss classification matters in 1952 and continues to meet, usually in London, to the present day. Most of the British authors whose work is presented in these pages have been members for most of the Group's life and continue in it. The Group maintains the basic position outlined in this paper to the present day. Its experimental approach has resulted in much more information about the nature and functions of classification systems. The ideal system has yet to be found. Classification research is still a promising area. The future calls for more experimentation based an reasoned approaches, following the example set by the Classification Research Group.
  7. Foskett, D.J.: Classification and integrative levels (1985) 0.01
    0.009529176 = product of:
      0.019058352 = sum of:
        0.019058352 = product of:
          0.038116705 = sum of:
            0.038116705 = weight(_text_:systems in 3639) [ClassicSimilarity], result of:
              0.038116705 = score(doc=3639,freq=8.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23767869 = fieldWeight in 3639, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3639)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Very interesting experimental work was done by Douglas Foskett and other British classificationists during the fifteen-year period following the end of World War II. The research was effective in demonstrating that it was possible to make very sophisticated classification systems for virtually any subject-systems suitable for experts and for the general user needing a detailed subject classification. The success of these special systems led to consideration of the possibility of putting them together to form a new general classification system. To do such a thing would require a general, overall framework of some kind, since systems limited to a special subject are easier to construct because one does not have to worry about including all of the pertinent facets needed for a general system. Individual subject classifications do not automatically coalesce into a general pattern. For example, what is central to one special classification might be fringe in another or in several others. Fringe terminologies may not coincide in terms of logical relationships. Homographs and homonyms may not rear their ugly heads until attempts at merger are made. Foskett points out that even identifying a thing in terms of a noun or verb involves different assumptions in approach. For these and other reasons, it made sense to look for existing work in fields where the necessary framework already existed. Foskett found the rudiments of such a system in a number of writings, culminating in a logical system called "integrative levels" suggested by James K. Feibleman (q.v.). This system consists of a set of advancing conceptual levels relating to the apparent organization of nature. These levels are irreversible in that if one once reached a certain level there was no going back. Foskett points out that with higher levels and greater complexity in structure the analysis needed to establish valid levels becomes much more difficult, especially as Feibleman stipulates that a higher level must not be reducible to a lower one. (That is, one cannot put Humpty Dumpty together again.) Foskett is optimistic to the extent of suggesting that references from level to level be made upwards, with inductive reasoning, a system used by Derek Austin (q.v.) for making reference structures in PRECIS. Though the method of integrative levels so far has not been used successfully with the byproducts of human social behavior and thought, so much has been learned about these areas during the past twenty years that Foskett may yet be correct in his optimism. Foskett's name has Jong been associated with classification in the social sciences. As with many of the British classificationists included in this book, he has been a member of the Classification Research Group for about forty years. Like the others, he continues to contribute to the field.
  8. Vickery, B.C.: Systematic subject indexing (1985) 0.01
    0.0094314385 = product of:
      0.018862877 = sum of:
        0.018862877 = product of:
          0.037725754 = sum of:
            0.037725754 = weight(_text_:systems in 3636) [ClassicSimilarity], result of:
              0.037725754 = score(doc=3636,freq=6.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2352409 = fieldWeight in 3636, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3636)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Brian C. Vickery, Director and Professor, School of Library, Archive and Information Studies, University College, London, is a prolific writer on classification and information retrieval. This paper was one of the earliest to present initial efforts by the Classification Research Group (q.v.). In it he clearly outlined the need for classification in subject indexing, which, at the time he wrote, was not a commonplace understanding. In fact, some indexing systems were made in the first place specifically to avoid general classification systems which were out of date in all fast-moving disciplines, especially in the "hard" sciences. Vickery picked up Julia Pettee's work (q.v.) an the concealed classification in subject headings (1947) and added to it, mainly adopting concepts from the work of S. R. Ranganathan (q.v.). He had already published a paper an notation in classification, pointing out connections between notation, words, and the concepts which they represent. He was especially concerned about the structure of notational symbols as such symbols represented relationships among subjects. Vickery also emphasized that index terms cover all aspects of a subject so that, in addition to having a basis in classification, the ideal index system should also have standardized nomenclature, as weIl as show evidence of a systematic classing of elementary terms. The necessary linkage between system and terms should be one of a number of methods, notably:
    - adding a relational term ("operator") to identify and join terms; - indicating grammatical case with terms where this would help clarify relationships; and - analyzing elementary terms to reveal fundamental categories where needed. He further added that a standard order for showing relational factors was highly desirable. Eventually, some years later, he was able to suggest such an order. This was accepted by his peers in the Classification Research Group, and utilized by Derek Austin in PRECIS (q.v.). Vickery began where Farradane began - with perception (a sound base according to current cognitive psychology). From this came further recognition of properties, parts, constituents, organs, effects, reactions, operations (physical and mental), added to the original "identity," "difference," "class membership," and "species." By defining categories more carefully, Vickery arrived at six (in addition to space (geographic) and time): - personality, thing, substance (e.g., dog, bicycle, rose) - part (e.g., paw, wheel, leaf) - substance (e.g., copper, water, butter) - action (e.g., scattering) - property (e.g., length, velocity) - operation (e.g., analysis, measurement) Thus, as early as 1953, the foundations were already laid for research that ultimately produced very sophisticated systems, such as PRECIS.
  9. Ranganathan, S.R.: Facet analysis: fundamental categories (1985) 0.01
    0.0067381454 = product of:
      0.013476291 = sum of:
        0.013476291 = product of:
          0.026952581 = sum of:
            0.026952581 = weight(_text_:systems in 3631) [ClassicSimilarity], result of:
              0.026952581 = score(doc=3631,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.16806422 = fieldWeight in 3631, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3631)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Colon Classification has not been widely adopted; however, the theory of facet analysis and synthesis Ranganathan developed has proved to be most influential. Although many theorists of subject analysis do not totally agree with his fundamental categories or citation order, Ranganathan's concept of facet analysis and synthesis has provided a viable method and a framework for approaching subject analysis and has become the foundation of subject analysis in the twentieth century. In this sense, his theory laid the groundwork for later investigations and inquiries into the nature of subject and classificatory categories and citation order. His influence is felt in all modern classification schemes and indexing systems. This is attested to by the citations to his ideas and works in numerous papers included in this collection and by the fact that other modern classification systems such as the Dewey Decimal Classification and the Bliss Bibliographic Classification have become increasingly faceted in recent editions. The following chapter from Elements of Library Classification represents one of Ranganathan's many expositions of facet analysis and fundamental categories. It is chosen because of its clarity of expression and comprehensibility (many readers find the majority of his writings difficult to understand).
  10. Feibleman, J.K.: Theory of integrative levels (1985) 0.01
    0.0054452433 = product of:
      0.010890487 = sum of:
        0.010890487 = product of:
          0.021780973 = sum of:
            0.021780973 = weight(_text_:systems in 3637) [ClassicSimilarity], result of:
              0.021780973 = score(doc=3637,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1358164 = fieldWeight in 3637, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3637)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In the early 1960s, the Classification Research Group in London (q.v.) had reached the point in its experimentation with faceted classification systems where some kind of amalgamation of individual schemes was needed. They sought a unifying principle or set of principles that would provide a basis for a general system. The individual faceted schemes would not merge; what was central to one subject was fringe to another, but the fringes did not coalesce. In looking farther afield, they discovered the theory of "integrative levels" set forth by James K. Feibleman, Chairman and Professor of Philosophy at Tulane University until 1969 and author of forty-five books and more than 175 articles in various fields of philosophy. Feibleman's research concerned the development of the sciences considered in terms of an organizing principle. In the physical sciences, one Gould begin with subparticles and work up to atoms, molecules, and molecular assemblages, interpolating the biological equivalents. Feibleman separates the various levels by use of a "no return" device: "each level organizes the level or levels below it plus one emergent quality." The process is not reversible without loss of identity. A dog, in his system, is no longer a dog when it has been run over by a car; the smashed parts cannot be put together again to function as a dog. The theory of integrative levels is an interesting one. The levels from subparticles to clusters of galaxies or from nuclei to organisms are relatively clearly defined. A discipline, such as any of the ones comprising the "hard sciences," is made up of integrative levels. Research is cumulative so that scholars are ready to contribute when very young. Classification in these fields can make good use of the theory of integrative levels-in fact it should do so. It would appear that the method is more difficult to apply in the social sciences and humanities. This appearance may, however, be superficial. Almost all past happenings are irrevocable; one cannot recall the French Revolution and re-fight it. Any academic discipline that moves an over time does not usually return to an earlier position, even when there are schools of thought involved. Philosophy may have "neo-" this or that, but the subsequent new is not the same as the previous new. One has only to look at the various kinds of neo-Platonists that arise from time to time to realize that. Physical science recognizes a series of paradigms in changing its methodology over time and a similar situation may also turn out to be true in cognitive science." If this should turn out to be the case, integrative levels would probably have a part in that field as weIl.