Search (56 results, page 1 of 3)

  • × type_ss:"a"
  • × theme_ss:"Semantic Web"
  1. Subirats, I.; Prasad, A.R.D.; Keizer, J.; Bagdanov, A.: Implementation of rich metadata formats and demantic tools using DSpace (2008) 0.03
    0.029541915 = product of:
      0.05908383 = sum of:
        0.05908383 = sum of:
          0.030802948 = weight(_text_:systems in 2656) [ClassicSimilarity], result of:
            0.030802948 = score(doc=2656,freq=4.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.19207339 = fieldWeight in 2656, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.03125 = fieldNorm(doc=2656)
          0.028280882 = weight(_text_:22 in 2656) [ClassicSimilarity], result of:
            0.028280882 = score(doc=2656,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.15476047 = fieldWeight in 2656, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2656)
      0.5 = coord(1/2)
    
    Abstract
    This poster explores the customization of DSpace to allow the use of the AGRIS Application Profile metadata standard and the AGROVOC thesaurus. The objective is the adaptation of DSpace, through the least invasive code changes either in the form of plug-ins or add-ons, to the specific needs of the Agricultural Sciences and Technology community. Metadata standards such as AGRIS AP, and Knowledge Organization Systems such as the AGROVOC thesaurus, provide mechanisms for sharing information in a standardized manner by recommending the use of common semantics and interoperable syntax (Subirats et al., 2007). AGRIS AP was created to enhance the description, exchange and subsequent retrieval of agricultural Document-like Information Objects (DLIOs). It is a metadata schema which draws from Metadata standards such as Dublin Core (DC), the Australian Government Locator Service Metadata (AGLS) and the Agricultural Metadata Element Set (AgMES) namespaces. It allows sharing of information across dispersed bibliographic systems (FAO, 2005). AGROVOC68 is a multilingual structured thesaurus covering agricultural and related domains. Its main role is to standardize the indexing process in order to make searching simpler and more efficient. AGROVOC is developed by FAO (Lauser et al., 2006). The customization of the DSpace is taking place in several phases. First, the AGRIS AP metadata schema was mapped onto the metadata DSpace model, with several enhancements implemented to support AGRIS AP elements. Next, AGROVOC will be integrated as a controlled vocabulary accessed through a local SKOS or OWL file. Eventually the system will be configurable to access AGROVOC through local files or remotely via webservices. Finally, spell checking and tooltips will be incorporated in the user interface to support metadata editing. Adapting DSpace to support AGRIS AP and annotation using the semantically-rich AGROVOC thesaurus transform DSpace into a powerful, domain-specific system for annotation and exchange of bibliographic metadata in the agricultural domain.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  2. Shoffner, M.; Greenberg, J.; Kramer-Duffield, J.; Woodbury, D.: Web 2.0 semantic systems : collaborative learning in science (2008) 0.03
    0.029541915 = product of:
      0.05908383 = sum of:
        0.05908383 = sum of:
          0.030802948 = weight(_text_:systems in 2661) [ClassicSimilarity], result of:
            0.030802948 = score(doc=2661,freq=4.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.19207339 = fieldWeight in 2661, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.03125 = fieldNorm(doc=2661)
          0.028280882 = weight(_text_:22 in 2661) [ClassicSimilarity], result of:
            0.028280882 = score(doc=2661,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.15476047 = fieldWeight in 2661, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2661)
      0.5 = coord(1/2)
    
    Abstract
    The basic goal of education within a discipline is to transform a novice into an expert. This entails moving the novice toward the "semantic space" that the expert inhabits-the space of concepts, meanings, vocabularies, and other intellectual constructs that comprise the discipline. Metadata is significant to this goal in digitally mediated education environments. Encoding the experts' semantic space not only enables the sharing of semantics among discipline scientists, but also creates an environment that bridges the semantic gap between the common vocabulary of the novice and the granular descriptive language of the seasoned scientist (Greenberg, et al, 2005). Developments underlying the Semantic Web, where vocabularies are formalized in the Web Ontology Language (OWL), and Web 2.0 approaches of user-generated folksonomies provide an infrastructure for linking vocabulary systems and promoting group learning via metadata literacy. Group learning is a pedagogical approach to teaching that harnesses the phenomenon of "collective intelligence" to increase learning by means of collaboration. Learning a new semantic system can be daunting for a novice, and yet it is integral to advance one's knowledge in a discipline and retain interest. These ideas are key to the "BOT 2.0: Botany through Web 2.0, the Memex and Social Learning" project (Bot 2.0).72 Bot 2.0 is a collaboration involving the North Carolina Botanical Garden, the UNC SILS Metadata Research center, and the Renaissance Computing Institute (RENCI). Bot 2.0 presents a curriculum utilizing a memex as a way for students to link and share digital information, working asynchronously in an environment beyond the traditional classroom. Our conception of a memex is not a centralized black box but rather a flexible, distributed framework that uses the most salient and easiest-to-use collaborative platforms (e.g., Facebook, Flickr, wiki and blog technology) for personal information management. By meeting students "where they live" digitally, we hope to attract students to the study of botanical science. A key aspect is to teach students scientific terminology and about the value of metadata, an inherent function in several of the technologies and in the instructional approach we are utilizing. This poster will report on a study examining the value of both folksonomies and taxonomies for post-secondary college students learning plant identification. Our data is drawn from a curriculum involving a virtual independent learning portion and a "BotCamp" weekend at UNC, where students work with digital plan specimens that they have captured. Results provide some insight into the importance of collaboration and shared vocabulary for gaining confidence and for student progression from novice to expert in botany.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  3. Urro, R.; Winiwarter, W.: Specifying ontologies : Linguistic aspects in problem-driven knowledge engineering (2001) 0.02
    0.020007102 = product of:
      0.040014204 = sum of:
        0.040014204 = product of:
          0.08002841 = sum of:
            0.08002841 = weight(_text_:systems in 3263) [ClassicSimilarity], result of:
              0.08002841 = score(doc=3263,freq=12.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.4990213 = fieldWeight in 3263, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3263)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The WWW includes on various levels systems of signs, not all of which are standardized as necessary for a real Semantic Web and not all of which can be standardized. Linguistic theories can contribute not only to the thus needed translation between sign systems, be they natural language systems or otherwise structured systems of knowledge representation, but also, of course, to standardization efforts. Within the current EC3 research framework for x-commerce, linguistic theories will play their part as they provide modeling analogies and patterns for the construction of a central knowledge base.
    Source
    Web Information Systems Engineering: Second International Conference on Web Information Systems Engineering (WISE'01), 3-6 December 2001, Kyoto, Japan. Ed.: Tamer Ozsu. Volume 2
  4. Wohlkinger, B.; Pellegrini, T.: Semantic Systems Technologiepolitik in der Europäischen Union (2006) 0.02
    0.019058352 = product of:
      0.038116705 = sum of:
        0.038116705 = product of:
          0.07623341 = sum of:
            0.07623341 = weight(_text_:systems in 5790) [ClassicSimilarity], result of:
              0.07623341 = score(doc=5790,freq=8.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.47535738 = fieldWeight in 5790, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5790)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Softwaresysteme sind ein strategischer Schwerpunkt der europäischen IKT-Politik. Mit der Horizontalisierung der Semantic Systems Forschung im Rahmen des 6. Rahmenprogramms unterstreicht die europäische Kommission die Wichtigkeit dieses F&E-Feldes für die Lissabon-Strategie. Über komplementäre nationale Programme und das neue Instrument der Europäischen Technologieplattformen werden zusätzlich Impulse gesetzt, die Forschungskompetenz vor allem im Bereich der kooperativen, industrienahen Semantic Systems F&E weiter auszubauen. Der Artikel gibt einen Überblick über existierende Forschungsprogramme im Bereich der Semantic Systems Forschung auf europäischer Ebene, stellt am Beispiel Österreich ein nationales Förderprogramm vor und untersucht, welche technologiepolitischen Entwicklungsmöglichkeiten offen stehen.
  5. Papadakis, I. et al.: Highlighting timely information in libraries through social and semantic Web technologies (2016) 0.02
    0.01767555 = product of:
      0.0353511 = sum of:
        0.0353511 = product of:
          0.0707022 = sum of:
            0.0707022 = weight(_text_:22 in 2090) [ClassicSimilarity], result of:
              0.0707022 = score(doc=2090,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.38690117 = fieldWeight in 2090, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2090)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  6. Stamou, G.; Chortaras, A.: Ontological query answering over semantic data (2017) 0.02
    0.015401474 = product of:
      0.030802948 = sum of:
        0.030802948 = product of:
          0.061605897 = sum of:
            0.061605897 = weight(_text_:systems in 3926) [ClassicSimilarity], result of:
              0.061605897 = score(doc=3926,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.38414678 = fieldWeight in 3926, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3926)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Modern information retrieval systems advance user experience on the basis of concept-based rather than keyword-based query answering.
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
  7. Smith, D.A.; Shadbolt, N.R.: FacetOntology : expressive descriptions of facets in the Semantic Web (2012) 0.02
    0.015219918 = product of:
      0.030439837 = sum of:
        0.030439837 = product of:
          0.060879674 = sum of:
            0.060879674 = weight(_text_:systems in 2208) [ClassicSimilarity], result of:
              0.060879674 = score(doc=2208,freq=10.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.37961838 = fieldWeight in 2208, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2208)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The formal structure of the information on the Semantic Web lends itself to faceted browsing, an information retrieval method where users can filter results based on the values of properties ("facets"). Numerous faceted browsers have been created to browse RDF and Linked Data, but these systems use their own ontologies for defining how data is queried to populate their facets. Since the source data is the same format across these systems (specifically, RDF), we can unify the different methods of describing how to quer the underlying data, to enable compatibility across systems, and provide an extensible base ontology for future systems. To this end, we present FacetOntology, an ontology that defines how to query data to form a faceted browser, and a number of transformations and filters that can be applied to data before it is shown to users. FacetOntology overcomes limitations in the expressivity of existing work, by enabling the full expressivity of SPARQL when selecting data for facets. By applying a FacetOntology definition to data, a set of facets are specified, each with queries and filters to source RDF data, which enables faceted browsing systems to be created using that RDF data.
  8. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.01
    0.014140441 = product of:
      0.028280882 = sum of:
        0.028280882 = product of:
          0.056561764 = sum of:
            0.056561764 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.056561764 = score(doc=3376,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    31. 7.2010 16:58:22
  9. Burke, M.: ¬The semantic web and the digital library (2009) 0.01
    0.013613109 = product of:
      0.027226217 = sum of:
        0.027226217 = product of:
          0.054452434 = sum of:
            0.054452434 = weight(_text_:systems in 2962) [ClassicSimilarity], result of:
              0.054452434 = score(doc=2962,freq=8.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.339541 = fieldWeight in 2962, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2962)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The purpose of this paper is to discuss alternative definitions of and approaches to the semantic web. It aims to clarify the relationship between the semantic web, Web 2.0 and Library 2.0. Design/methodology/approach - The paper is based on a literature review and evaluation of systems with semantic web features. It identifies and describes semantic web projects of relevance to libraries and evaluates the usefulness of JeromeDL and other social semantic digital library systems. It discusses actual and potential applications for libraries and makes recommendations for actions needed by researchers and practitioners. Findings - The paper concludes that the library community has a lot to offer to, and benefit from, the semantic web, but there is limited interest in the library community. It recommends that there be greater collaboration between semantic web researchers and project developers, library management systems providers and the library community. Librarians should get involved in the development of semantic web standards, for example, metadata and taxonomies. Originality/value - The paper clarifies the distinction between semantic web and Web 2.0 in a digital library environment. It evaluates and predicts future developments for operational systems.
  10. Miles, A.; Pérez-Agüera, J.R.: SKOS: Simple Knowledge Organisation for the Web (2006) 0.01
    0.013476291 = product of:
      0.026952581 = sum of:
        0.026952581 = product of:
          0.053905163 = sum of:
            0.053905163 = weight(_text_:systems in 504) [ClassicSimilarity], result of:
              0.053905163 = score(doc=504,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.33612844 = fieldWeight in 504, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=504)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article introduces the Simple Knowledge Organisation System (SKOS), a Semantic Web language for representing controlled structured vocabularies, including thesauri, classification schemes, subject heading systems and taxonomies. SKOS provides a framework for publishing thesauri, classification schemes, and subject indexes on the Web, and for applying these systems to resource collections that are part of the SemanticWeb. SemanticWeb applications may harvest and merge SKOS data, to integrate and enhances retrieval service across multiple collections (e.g. libraries). This article also describes some alternatives for integrating Semantic Web services based on the Resource Description Framework (RDF) and SKOS into a distributed enterprise architecture.
  11. Wenige, L.: ¬The application of linked data resources for library recommender systems (2017) 0.01
    0.013476291 = product of:
      0.026952581 = sum of:
        0.026952581 = product of:
          0.053905163 = sum of:
            0.053905163 = weight(_text_:systems in 3500) [ClassicSimilarity], result of:
              0.053905163 = score(doc=3500,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.33612844 = fieldWeight in 3500, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3500)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  12. Faaborg, A.; Lagoze, C.: Semantic browsing (2003) 0.01
    0.012372886 = product of:
      0.024745772 = sum of:
        0.024745772 = product of:
          0.049491543 = sum of:
            0.049491543 = weight(_text_:22 in 1026) [ClassicSimilarity], result of:
              0.049491543 = score(doc=1026,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2708308 = fieldWeight in 1026, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1026)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Research and advanced technology for digital libraries : 7th European Conference, proceedings / ECDL 2003, Trondheim, Norway, August 17-22, 2003
  13. Malmsten, M.: Making a library catalogue part of the Semantic Web (2008) 0.01
    0.012372886 = product of:
      0.024745772 = sum of:
        0.024745772 = product of:
          0.049491543 = sum of:
            0.049491543 = weight(_text_:22 in 2640) [ClassicSimilarity], result of:
              0.049491543 = score(doc=2640,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2708308 = fieldWeight in 2640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2640)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  14. Schneider, R.: Web 3.0 ante portas? : Integration von Social Web und Semantic Web (2008) 0.01
    0.012372886 = product of:
      0.024745772 = sum of:
        0.024745772 = product of:
          0.049491543 = sum of:
            0.049491543 = weight(_text_:22 in 4184) [ClassicSimilarity], result of:
              0.049491543 = score(doc=4184,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2708308 = fieldWeight in 4184, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4184)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2011 10:38:28
  15. Blumauer, A.; Pellegrini, T.: Semantic Web Revisited : Eine kurze Einführung in das Social Semantic Web (2009) 0.01
    0.012372886 = product of:
      0.024745772 = sum of:
        0.024745772 = product of:
          0.049491543 = sum of:
            0.049491543 = weight(_text_:22 in 4855) [ClassicSimilarity], result of:
              0.049491543 = score(doc=4855,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2708308 = fieldWeight in 4855, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4855)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Pages
    S.3-22
  16. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.01
    0.012372886 = product of:
      0.024745772 = sum of:
        0.024745772 = product of:
          0.049491543 = sum of:
            0.049491543 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.049491543 = score(doc=759,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    11. 5.2013 19:22:18
  17. Gómez-Pérez, A.; Corcho, O.: Ontology languages for the Semantic Web (2015) 0.01
    0.011789299 = product of:
      0.023578597 = sum of:
        0.023578597 = product of:
          0.047157194 = sum of:
            0.047157194 = weight(_text_:systems in 3297) [ClassicSimilarity], result of:
              0.047157194 = score(doc=3297,freq=6.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.29405114 = fieldWeight in 3297, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3297)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontologies have proven to be an essential element in many applications. They are used in agent systems, knowledge management systems, and e-commerce platforms. They can also generate natural language, integrate intelligent information, provide semantic-based access to the Internet, and extract information from texts in addition to being used in many other applications to explicitly declare the knowledge embedded in them. However, not only are ontologies useful for applications in which knowledge plays a key role, but they can also trigger a major change in current Web contents. This change is leading to the third generation of the Web-known as the Semantic Web-which has been defined as "the conceptual structuring of the Web in an explicit machine-readable way."1 This definition does not differ too much from the one used for defining an ontology: "An ontology is an explicit, machinereadable specification of a shared conceptualization."2 In fact, new ontology-based applications and knowledge architectures are developing for this new Web. A common claim for all of these approaches is the need for languages to represent the semantic information that this Web requires-solving the heterogeneous data exchange in this heterogeneous environment. Here, we don't decide which language is best of the Semantic Web. Rather, our goal is to help developers find the most suitable language for their representation needs. The authors analyze the most representative ontology languages created for the Web and compare them using a common framework.
    Source
    IEEE intelligent systems 2002, Jan./Feb., S.54-60
  18. Matthews, B.M.: Integration via meaning : using the Semantic Web to deliver Web services (2002) 0.01
    0.011551105 = product of:
      0.02310221 = sum of:
        0.02310221 = product of:
          0.04620442 = sum of:
            0.04620442 = weight(_text_:systems in 3609) [ClassicSimilarity], result of:
              0.04620442 = score(doc=3609,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.28811008 = fieldWeight in 3609, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3609)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The major developments ofthe World-Wide Web (WWW) in the last two years have been Web Services and the Semantic Web. The former allows the construction of distributed systems across the WWW by providing a lightweight middleware architecture. The latter provides an infrastructure for accessing resources an the WWW via their relationships with respect to conceptual descriptions. In this paper, I shall review the progress undertaken in each of these two areas. Further, I shall argue that in order for the aims of both the Semantic Web and the Web Services activities to be successful, then the Web Service architecture needs to be augmented by concepts and tools of the Semantic Web. This infrastructure will allow resource discovery, brokering and access to be enabled in a standardised, integrated and interoperable manner. Finally, I survey the CLRC Information Technology R&D programme to show how it is contributing to the development of this future infrastructure.
    Source
    Gaining insight from research information (CRIS2002): Proceedings of the 6th International Conference an Current Research Information Systems, University of Kassel, August 29 - 31, 2002. Eds: W. Adamczak u. A. Nase
  19. Uren, V.; Cimiano, P.; Iria, J.; Handschuh, S.; Vargas-Vera, M.; Motta, E.; Ciravegnac, F.: Semantic annotation for knowledge management : requirements and a survey of the state of the art (2006) 0.01
    0.011551105 = product of:
      0.02310221 = sum of:
        0.02310221 = product of:
          0.04620442 = sum of:
            0.04620442 = weight(_text_:systems in 229) [ClassicSimilarity], result of:
              0.04620442 = score(doc=229,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.28811008 = fieldWeight in 229, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=229)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    While much of a company's knowledge can be found in text repositories, current content management systems have limited capabilities for structuring and interpreting documents. In the emerging Semantic Web, search, interpretation and aggregation can be addressed by ontology-based semantic mark-up. In this paper, we examine semantic annotation, identify a number of requirements, and review the current generation of semantic annotation systems. This analysis shows that, while there is still some way to go before semantic annotation tools will be able to address fully all the knowledge management needs, research in the area is active and making good progress.
  20. Kara, S.: ¬An ontology-based retrieval system using semantic indexing (2012) 0.01
    0.011551105 = product of:
      0.02310221 = sum of:
        0.02310221 = product of:
          0.04620442 = sum of:
            0.04620442 = weight(_text_:systems in 3829) [ClassicSimilarity], result of:
              0.04620442 = score(doc=3829,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.28811008 = fieldWeight in 3829, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3829)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this thesis, we present an ontology-based information extraction and retrieval system and its application to soccer domain. In general, we deal with three issues in semantic search, namely, usability, scalability and retrieval performance. We propose a keyword-based semantic retrieval approach. The performance of the system is improved considerably using domain-specific information extraction, inference and rules. Scalability is achieved by adapting a semantic indexing approach. The system is implemented using the state-of-the-art technologies in SemanticWeb and its performance is evaluated against traditional systems as well as the query expansion methods. Furthermore, a detailed evaluation is provided to observe the performance gain due to domain-specific information extraction and inference. Finally, we show how we use semantic indexing to solve simple structural ambiguities.
    Source
    Information Systems. 37(2012) no. 4, S.294-305

Authors

Languages

  • e 49
  • d 7

Types