Search (2 results, page 1 of 1)

  • × year_i:[2010 TO 2020}
  • × author_ss:"Jansen, B.J."
  1. Coughlin, D.M.; Campbell, M.C.; Jansen, B.J.: ¬A web analytics approach for appraising electronic resources in academic libraries (2016) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 2770) [ClassicSimilarity], result of:
              0.027226217 = score(doc=2770,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 2770, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2770)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    University libraries provide access to thousands of journals and spend millions of dollars annually on electronic resources. With several commercial entities providing these electronic resources, the result can be silo systems and processes to evaluate cost and usage of these resources, making it difficult to provide meaningful analytics. In this research, we examine a subset of journals from a large research library using a web analytics approach with the goal of developing a framework for the analysis of library subscriptions. This foundational approach is implemented by comparing the impact to the cost, titles, and usage for the subset of journals and by assessing the funding area. Overall, the results highlight the benefit of a web analytics evaluation framework for university libraries and the impact of classifying titles based on the funding area. Furthermore, they show the statistical difference in both use and cost among the various funding areas when ranked by cost, eliminating the outliers of heavily used and highly expensive journals. Future work includes refining this model for a larger scale analysis tying metrics to library organizational objectives and for the creation of an online application to automate this analysis.
  2. Liu, Z.; Jansen, B.J.: ASK: A taxonomy of accuracy, social, and knowledge information seeking posts in social question and answering (2017) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 3345) [ClassicSimilarity], result of:
              0.027226217 = score(doc=3345,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 3345, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3345)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Many people turn to their social networks to find information through the practice of question and answering. We believe it is necessary to use different answering strategies based on the type of questions to accommodate the different information needs. In this research, we propose the ASK taxonomy that categorizes questions posted on social networking sites into three types according to the nature of the questioner's inquiry of accuracy, social, or knowledge. To automatically decide which answering strategy to use, we develop a predictive model based on ASK question types using question features from the perspectives of lexical, topical, contextual, and syntactic as well as answer features. By applying the classifier on an annotated data set, we present a comprehensive analysis to compare questions in terms of their word usage, topical interests, temporal and spatial restrictions, syntactic structure, and response characteristics. Our research results show that the three types of questions exhibited different characteristics in the way they are asked. Our automatic classification algorithm achieves an 83% correct labeling result, showing the value of the ASK taxonomy for the design of social question and answering systems.