Search (3 results, page 1 of 1)

  • × year_i:[2020 TO 2030}
  • × theme_ss:"Automatisches Indexieren"
  1. Golub, K.: Automated subject indexing : an overview (2021) 0.01
    0.013476291 = product of:
      0.026952581 = sum of:
        0.026952581 = product of:
          0.053905163 = sum of:
            0.053905163 = weight(_text_:systems in 718) [ClassicSimilarity], result of:
              0.053905163 = score(doc=718,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.33612844 = fieldWeight in 718, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=718)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In the face of the ever-increasing document volume, libraries around the globe are more and more exploring (semi-) automated approaches to subject indexing. This helps sustain bibliographic objectives, enrich metadata, and establish more connections across documents from various collections, effectively leading to improved information retrieval and access. However, generally accepted automated approaches that are functional in operative systems are lacking. This article aims to provide an overview of basic principles used for automated subject indexing, major approaches in relation to their possible application in actual library systems, existing working examples, as well as related challenges calling for further research.
  2. Villaespesa, E.; Crider, S.: ¬A critical comparison analysis between human and machine-generated tags for the Metropolitan Museum of Art's collection (2021) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 341) [ClassicSimilarity], result of:
              0.027226217 = score(doc=341,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 341, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=341)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose Based on the highlights of The Metropolitan Museum of Art's collection, the purpose of this paper is to examine the similarities and differences between the subject keywords tags assigned by the museum and those produced by three computer vision systems. Design/methodology/approach This paper uses computer vision tools to generate the data and the Getty Research Institute's Art and Architecture Thesaurus (AAT) to compare the subject keyword tags. Findings This paper finds that there are clear opportunities to use computer vision technologies to automatically generate tags that expand the terms used by the museum. This brings a new perspective to the collection that is different from the traditional art historical one. However, the study also surfaces challenges about the accuracy and lack of context within the computer vision results. Practical implications This finding has important implications on how these machine-generated tags complement the current taxonomies and vocabularies inputted in the collection database. In consequence, the museum needs to consider the selection process for choosing which computer vision system to apply to their collection. Furthermore, they also need to think critically about the kind of tags they wish to use, such as colors, materials or objects. Originality/value The study results add to the rapidly evolving field of computer vision within the art information context and provide recommendations of aspects to consider before selecting and implementing these technologies.
  3. Suominen, O.; Koskenniemi, I.: Annif Analyzer Shootout : comparing text lemmatization methods for automated subject indexing (2022) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 658) [ClassicSimilarity], result of:
              0.027226217 = score(doc=658,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 658, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=658)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Automated text classification is an important function for many AI systems relevant to libraries, including automated subject indexing and classification. When implemented using the traditional natural language processing (NLP) paradigm, one key part of the process is the normalization of words using stemming or lemmatization, which reduces the amount of linguistic variation and often improves the quality of classification. In this paper, we compare the output of seven different text lemmatization algorithms as well as two baseline methods. We measure how the choice of method affects the quality of text classification using example corpora in three languages. The experiments have been performed using the open source Annif toolkit for automated subject indexing and classification, but should generalize also to other NLP toolkits and similar text classification tasks. The results show that lemmatization methods in most cases outperform baseline methods in text classification particularly for Finnish and Swedish text, but not English, where baseline methods are most effective. The differences between lemmatization methods are quite small. The systematic comparison will help optimize text classification pipelines and inform the further development of the Annif toolkit to incorporate a wider choice of normalization methods.