Search (1 results, page 1 of 1)

  • × author_ss:"Almic, P."
  • × type_ss:"el"
  1. Snajder, J.; Almic, P.: Modeling semantic compositionality of Croatian multiword expressions (2015) 0.02
    0.020671291 = product of:
      0.062013872 = sum of:
        0.062013872 = product of:
          0.093020804 = sum of:
            0.057281278 = weight(_text_:network in 2920) [ClassicSimilarity], result of:
              0.057281278 = score(doc=2920,freq=2.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.29521978 = fieldWeight in 2920, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2920)
            0.035739526 = weight(_text_:29 in 2920) [ClassicSimilarity], result of:
              0.035739526 = score(doc=2920,freq=2.0), product of:
                0.15326229 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.043569047 = queryNorm
                0.23319192 = fieldWeight in 2920, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2920)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    A distinguishing feature of many multiword expressions (MWEs) is their semantic non-compositionality. Determining the semantic compositionality of MWEs is important for many natural language processing tasks. We address the task of modeling semantic compositionality of Croatian MWEs. We adopt a composition-based approach within the distributional semantics framework. We build and evaluate models based on Latent Semantic Analysis and the recently proposed neural network-based Skip-gram model, and experiment with different composition functions. We show that the compositionality scores predicted by the Skip-gram additive models correlate well with human judgments (=0.50). When framed as a classification task, the model achieves an accuracy of 0.64.
    Date
    29. 4.2016 12:42:17