Search (1 results, page 1 of 1)

  • × author_ss:"Darmoni, S.F."
  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  1. Chebil, W.; Soualmia, L.F.; Omri, M.N.; Darmoni, S.F.: Indexing biomedical documents with a possibilistic network (2016) 0.01
    0.007500738 = product of:
      0.022502214 = sum of:
        0.022502214 = product of:
          0.06750664 = sum of:
            0.06750664 = weight(_text_:network in 2854) [ClassicSimilarity], result of:
              0.06750664 = score(doc=2854,freq=4.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.34791988 = fieldWeight in 2854, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2854)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    In this article, we propose a new approach for indexing biomedical documents based on a possibilistic network that carries out partial matching between documents and biomedical vocabulary. The main contribution of our approach is to deal with the imprecision and uncertainty of the indexing task using possibility theory. We enhance estimation of the similarity between a document and a given concept using the two measures of possibility and necessity. Possibility estimates the extent to which a document is not similar to the concept. The second measure can provide confirmation that the document is similar to the concept. Our contribution also reduces the limitation of partial matching. Although the latter allows extracting from the document other variants of terms than those in dictionaries, it also generates irrelevant information. Our objective is to filter the index using the knowledge provided by the Unified Medical Language System®. Experiments were carried out on different corpora, showing encouraging results (the improvement rate is +26.37% in terms of main average precision when compared with the baseline).