Search (315 results, page 1 of 16)

  • × theme_ss:"Informetrie"
  1. Bookstein, A.: Informetric distributions : I. Unified overview (1990) 0.04
    0.03689651 = product of:
      0.11068952 = sum of:
        0.11068952 = product of:
          0.16603428 = sum of:
            0.083392225 = weight(_text_:29 in 6902) [ClassicSimilarity], result of:
              0.083392225 = score(doc=6902,freq=2.0), product of:
                0.15326229 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.043569047 = queryNorm
                0.5441145 = fieldWeight in 6902, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6902)
            0.08264206 = weight(_text_:22 in 6902) [ClassicSimilarity], result of:
              0.08264206 = score(doc=6902,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.5416616 = fieldWeight in 6902, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6902)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Date
    22. 7.2006 18:55:29
  2. Liu, D.-R.; Shih, M.-J.: Hybrid-patent classification based on patent-network analysis (2011) 0.03
    0.032542214 = product of:
      0.09762664 = sum of:
        0.09762664 = product of:
          0.14643995 = sum of:
            0.11692493 = weight(_text_:network in 4189) [ClassicSimilarity], result of:
              0.11692493 = score(doc=4189,freq=12.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.6026149 = fieldWeight in 4189, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4189)
            0.029515022 = weight(_text_:22 in 4189) [ClassicSimilarity], result of:
              0.029515022 = score(doc=4189,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.19345059 = fieldWeight in 4189, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4189)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Effective patent management is essential for organizations to maintain their competitive advantage. The classification of patents is a critical part of patent management and industrial analysis. This study proposes a hybrid-patent-classification approach that combines a novel patent-network-based classification method with three conventional classification methods to analyze query patents and predict their classes. The novel patent network contains various types of nodes that represent different features extracted from patent documents. The nodes are connected based on the relationship metrics derived from the patent metadata. The proposed classification method predicts a query patent's class by analyzing all reachable nodes in the patent network and calculating their relevance to the query patent. It then classifies the query patent with a modified k-nearest neighbor classifier. To further improve the approach, we combine it with content-based, citation-based, and metadata-based classification methods to develop a hybrid-classification approach. We evaluate the performance of the hybrid approach on a test dataset of patent documents obtained from the U.S. Patent and Trademark Office, and compare its performance with that of the three conventional methods. The results demonstrate that the proposed patent-network-based approach yields more accurate class predictions than the patent network-based approach.
    Date
    22. 1.2011 13:04:21
  3. Thelwall, M.; Sud, P.; Wilkinson, D.: Link and co-inlink network diagrams with URL citations or title mentions (2012) 0.03
    0.03027831 = product of:
      0.09083493 = sum of:
        0.09083493 = product of:
          0.13625239 = sum of:
            0.10673737 = weight(_text_:network in 57) [ClassicSimilarity], result of:
              0.10673737 = score(doc=57,freq=10.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.5501096 = fieldWeight in 57, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=57)
            0.029515022 = weight(_text_:22 in 57) [ClassicSimilarity], result of:
              0.029515022 = score(doc=57,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.19345059 = fieldWeight in 57, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=57)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Webometric network analyses have been used to map the connectivity of groups of websites to identify clusters, important sites or overall structure. Such analyses have mainly been based upon hyperlink counts, the number of hyperlinks between a pair of websites, although some have used title mentions or URL citations instead. The ability to automatically gather hyperlink counts from Yahoo! ceased in April 2011 and the ability to manually gather such counts was due to cease by early 2012, creating a need for alternatives. This article assesses URL citations and title mentions as possible replacements for hyperlinks in both binary and weighted direct link and co-inlink network diagrams. It also assesses three different types of data for the network connections: hit count estimates, counts of matching URLs, and filtered counts of matching URLs. Results from analyses of U.S. library and information science departments and U.K. universities give evidence that metrics based upon URLs or titles can be appropriate replacements for metrics based upon hyperlinks for both binary and weighted networks, although filtered counts of matching URLs are necessary to give the best results for co-title mention and co-URL citation network diagrams.
    Date
    6. 4.2012 18:16:22
  4. Shibata, N.; Kajikawa, Y.; Takeda, Y.; Matsushima, K.: Comparative study on methods of detecting research fronts using different types of citation (2009) 0.03
    0.027774185 = product of:
      0.083322555 = sum of:
        0.083322555 = product of:
          0.124983825 = sum of:
            0.095468804 = weight(_text_:network in 2743) [ClassicSimilarity], result of:
              0.095468804 = score(doc=2743,freq=8.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.492033 = fieldWeight in 2743, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2743)
            0.029515022 = weight(_text_:22 in 2743) [ClassicSimilarity], result of:
              0.029515022 = score(doc=2743,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.19345059 = fieldWeight in 2743, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2743)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    In this article, we performed a comparative study to investigate the performance of methods for detecting emerging research fronts. Three types of citation network, co-citation, bibliographic coupling, and direct citation, were tested in three research domains, gallium nitride (GaN), complex network (CNW), and carbon nanotube (CNT). Three types of citation network were constructed for each research domain, and the papers in those domains were divided into clusters to detect the research front. We evaluated the performance of each type of citation network in detecting a research front by using the following measures of papers in the cluster: visibility, measured by normalized cluster size, speed, measured by average publication year, and topological relevance, measured by density. Direct citation, which could detect large and young emerging clusters earlier, shows the best performance in detecting a research front, and co-citation shows the worst. Additionally, in direct citation networks, the clustering coefficient was the largest, which suggests that the content similarity of papers connected by direct citations is the greatest and that direct citation networks have the least risk of missing emerging research domains because core papers are included in the largest component.
    Date
    22. 3.2009 17:52:50
  5. Zhang, Y.; Wu, M.; Zhang, G.; Lu, J.: Stepping beyond your comfort zone : diffusion-based network analytics for knowledge trajectory recommendation (2023) 0.03
    0.027774185 = product of:
      0.083322555 = sum of:
        0.083322555 = product of:
          0.124983825 = sum of:
            0.095468804 = weight(_text_:network in 994) [ClassicSimilarity], result of:
              0.095468804 = score(doc=994,freq=8.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.492033 = fieldWeight in 994, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=994)
            0.029515022 = weight(_text_:22 in 994) [ClassicSimilarity], result of:
              0.029515022 = score(doc=994,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.19345059 = fieldWeight in 994, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=994)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Predicting a researcher's knowledge trajectories beyond their current foci can leverage potential inter-/cross-/multi-disciplinary interactions to achieve exploratory innovation. In this study, we present a method of diffusion-based network analytics for knowledge trajectory recommendation. The method begins by constructing a heterogeneous bibliometric network consisting of a co-topic layer and a co-authorship layer. A novel link prediction approach with a diffusion strategy is then used to capture the interactions between social elements (e.g., collaboration) and knowledge elements (e.g., technological similarity) in the process of exploratory innovation. This diffusion strategy differentiates the interactions occurring among homogeneous and heterogeneous nodes in the heterogeneous bibliometric network and weights the strengths of these interactions. Two sets of experiments-one with a local dataset and the other with a global dataset-demonstrate that the proposed method is prior to 10 selected baselines in link prediction, recommender systems, and upstream graph representation learning. A case study recommending knowledge trajectories of information scientists with topical hierarchy and explainable mediators reveals the proposed method's reliability and potential practical uses in broad scenarios.
    Date
    22. 6.2023 18:07:12
  6. Zhang, L.; Thijs, B.; Glänzel, W.: What does scientometrics share with other "metrics" sciences? (2013) 0.03
    0.027561722 = product of:
      0.082685165 = sum of:
        0.082685165 = product of:
          0.124027744 = sum of:
            0.076375045 = weight(_text_:network in 960) [ClassicSimilarity], result of:
              0.076375045 = score(doc=960,freq=2.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.3936264 = fieldWeight in 960, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0625 = fieldNorm(doc=960)
            0.047652703 = weight(_text_:29 in 960) [ClassicSimilarity], result of:
              0.047652703 = score(doc=960,freq=2.0), product of:
                0.15326229 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.043569047 = queryNorm
                0.31092256 = fieldWeight in 960, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=960)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    In this article, the authors answer the question of whether the field of scientometrics/bibliometrics shares essential characteristics of "metrics" sciences. To achieve this objective, the citation network of seven selected metrics and their information environment is analyzed.
    Date
    25. 6.2013 20:29:05
  7. Zhang, Y.; Jansen, B.J.; Spink, A.: Identification of factors predicting clickthrough in Web searching using neural network analysis (2009) 0.03
    0.025872445 = product of:
      0.07761733 = sum of:
        0.07761733 = product of:
          0.11642599 = sum of:
            0.081007965 = weight(_text_:network in 2742) [ClassicSimilarity], result of:
              0.081007965 = score(doc=2742,freq=4.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.41750383 = fieldWeight in 2742, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2742)
            0.035418026 = weight(_text_:22 in 2742) [ClassicSimilarity], result of:
              0.035418026 = score(doc=2742,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.23214069 = fieldWeight in 2742, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2742)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    In this research, we aim to identify factors that significantly affect the clickthrough of Web searchers. Our underlying goal is determine more efficient methods to optimize the clickthrough rate. We devise a clickthrough metric for measuring customer satisfaction of search engine results using the number of links visited, number of queries a user submits, and rank of clicked links. We use a neural network to detect the significant influence of searching characteristics on future user clickthrough. Our results show that high occurrences of query reformulation, lengthy searching duration, longer query length, and the higher ranking of prior clicked links correlate positively with future clickthrough. We provide recommendations for leveraging these findings for improving the performance of search engine retrieval and result ranking, along with implications for search engine marketing.
    Date
    22. 3.2009 17:49:11
  8. Milard, B.; Pitarch, Y.: Egocentric cocitation networks and scientific papers destinies (2023) 0.03
    0.025872445 = product of:
      0.07761733 = sum of:
        0.07761733 = product of:
          0.11642599 = sum of:
            0.081007965 = weight(_text_:network in 918) [ClassicSimilarity], result of:
              0.081007965 = score(doc=918,freq=4.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.41750383 = fieldWeight in 918, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.046875 = fieldNorm(doc=918)
            0.035418026 = weight(_text_:22 in 918) [ClassicSimilarity], result of:
              0.035418026 = score(doc=918,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.23214069 = fieldWeight in 918, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=918)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    To what extent is the destiny of a scientific paper shaped by the cocitation network in which it is involved? What are the social contexts that can explain these structuring? Using bibliometric data, interviews with researchers, and social network analysis, this article proposes a typology based on egocentric cocitation networks that displays a quadruple structuring (before and after publication): polarization, clusterization, atomization, and attrition. It shows that the academic capital of the authors and the intellectual resources of their research are key factors of these destinies, as are the social relations between the authors concerned. The circumstances of the publishing are also correlated with the structuring of the egocentric cocitation networks, showing how socially embedded they are. Finally, the article discusses the contribution of these original networks to the analyze of scientific production and its dynamics.
    Date
    21. 3.2023 19:22:14
  9. Stvilia, B.; Hinnant, C.C.; Schindler, K.; Worrall, A.; Burnett, G.; Burnett, K.; Kazmer, M.M.; Marty, P.F.: Composition of scientific teams and publication productivity at a national science lab (2011) 0.02
    0.024931874 = product of:
      0.07479562 = sum of:
        0.07479562 = product of:
          0.11219343 = sum of:
            0.08267841 = weight(_text_:network in 4191) [ClassicSimilarity], result of:
              0.08267841 = score(doc=4191,freq=6.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.42611307 = fieldWeight in 4191, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4191)
            0.029515022 = weight(_text_:22 in 4191) [ClassicSimilarity], result of:
              0.029515022 = score(doc=4191,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.19345059 = fieldWeight in 4191, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4191)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    The production of scientific knowledge has evolved from a process of inquiry largely based on the activities of individual scientists to one grounded in the collaborative efforts of specialized research teams. This shift brings to light a new question: how the composition of scientific teams affects their production of knowledge. This study employs data from 1,415 experiments conducted at the National High Magnetic Field Laboratory (NHMFL) between 2005 and 2008 to identify and select a sample of 89 teams and examine whether team diversity and network characteristics affect productivity. The study examines how the diversity of science teams along several variables affects overall team productivity. Results indicate several diversity measures associated with network position and team productivity. Teams with mixed institutional associations were more central to the overall network compared with teams that primarily comprised NHMFL's own scientists. Team cohesion was positively related to productivity. The study indicates that high productivity in teams is associated with high disciplinary diversity and low seniority diversity of team membership. Finally, an increase in the share of senior members negatively affects productivity, and teams with members in central structural positions perform better than other teams.
    Date
    22. 1.2011 13:19:42
  10. Kuan, C.-H.; Liu, J.S.: ¬A new approach for main path analysis : decay in knowledge diffusion (2016) 0.02
    0.024931874 = product of:
      0.07479562 = sum of:
        0.07479562 = product of:
          0.11219343 = sum of:
            0.08267841 = weight(_text_:network in 2649) [ClassicSimilarity], result of:
              0.08267841 = score(doc=2649,freq=6.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.42611307 = fieldWeight in 2649, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2649)
            0.029515022 = weight(_text_:22 in 2649) [ClassicSimilarity], result of:
              0.029515022 = score(doc=2649,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.19345059 = fieldWeight in 2649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2649)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Main path analysis is a powerful tool for extracting the backbones of a directed network and has been applied widely in bibliometric studies. In contrast to the no-decay assumption in the traditional approach, this study proposes a novel technique by assuming that the strength of knowledge decays when knowledge contained in one document is passed on to another document down the citation chain. We propose three decay models, arithmetic decay, geometric decay, and harmonic decay, along with their theoretical properties. In general, results of the proposed decay models depend largely on the local structure of a citation network as opposed to the global structure in the traditional approach. Thus, the significance of citation links and the associated documents that are overemphasized by the global structure in the traditional no-decay approach is treated more properly. For example, the traditional approach commonly assigns high value to documents that heavily reference others, such as review articles. Specifically in the geometric and harmonic decay models, only truly significant review articles will be included in the resulting main paths. We demonstrate this new approach and its properties through the DNA literature citation network.
    Date
    22. 1.2016 14:23:00
  11. Yan, E.: Finding knowledge paths among scientific disciplines (2014) 0.02
    0.024277154 = product of:
      0.07283146 = sum of:
        0.07283146 = product of:
          0.109247185 = sum of:
            0.06750664 = weight(_text_:network in 1534) [ClassicSimilarity], result of:
              0.06750664 = score(doc=1534,freq=4.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.34791988 = fieldWeight in 1534, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1534)
            0.041740544 = weight(_text_:22 in 1534) [ClassicSimilarity], result of:
              0.041740544 = score(doc=1534,freq=4.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.27358043 = fieldWeight in 1534, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1534)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper uncovers patterns of knowledge dissemination among scientific disciplines. Although the transfer of knowledge is largely unobservable, citations from one discipline to another have been proven to be an effective proxy to study disciplinary knowledge flow. This study constructs a knowledge-flow network in which a node represents a Journal Citation Reports subject category and a link denotes the citations from one subject category to another. Using the concept of shortest path, several quantitative measurements are proposed and applied to a knowledge-flow network. Based on an examination of subject categories in Journal Citation Reports, this study indicates that social science domains tend to be more self-contained, so it is more difficult for knowledge from other domains to flow into them; at the same time, knowledge from science domains, such as biomedicine-, chemistry-, and physics-related domains, can access and be accessed by other domains more easily. This study also shows that social science domains are more disunified than science domains, because three fifths of the knowledge paths from one social science domain to another require at least one science domain to serve as an intermediate. This work contributes to discussions on disciplinarity and interdisciplinarity by providing empirical analysis.
    Date
    26.10.2014 20:22:22
  12. Jiang, Z.; Liu, X.; Chen, Y.: Recovering uncaptured citations in a scholarly network : a two-step citation analysis to estimate publication importance (2016) 0.02
    0.021619909 = product of:
      0.064859726 = sum of:
        0.064859726 = product of:
          0.097289585 = sum of:
            0.06750664 = weight(_text_:network in 3018) [ClassicSimilarity], result of:
              0.06750664 = score(doc=3018,freq=4.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.34791988 = fieldWeight in 3018, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3018)
            0.029782942 = weight(_text_:29 in 3018) [ClassicSimilarity], result of:
              0.029782942 = score(doc=3018,freq=2.0), product of:
                0.15326229 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.043569047 = queryNorm
                0.19432661 = fieldWeight in 3018, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3018)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    The citation relationships between publications, which are significant for assessing the importance of scholarly components within a network, have been used for various scientific applications. Missing citation metadata in scholarly databases, however, create problems for classical citation-based ranking algorithms and challenge the performance of citation-based retrieval systems. In this research, we utilize a two-step citation analysis method to investigate the importance of publications for which citation information is partially missing. First, we calculate the importance of the author and then use his importance to estimate the publication importance for some selected articles. To evaluate this method, we designed a simulation experiment-"random citation-missing"-to test the two-step citation analysis that we carried out with the Association for Computing Machinery (ACM) Digital Library (DL). In this experiment, we simulated different scenarios in a large-scale scientific digital library, from high-quality citation data, to very poor quality data, The results show that a two-step citation analysis can effectively uncover the importance of publications in different situations. More importantly, we found that the optimized impact from the importance of an author (first step) is exponentially increased when the quality of citation decreases. The findings from this study can further enhance citation-based publication-ranking algorithms for real-world applications.
    Date
    12. 6.2016 20:31:29
  13. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.02
    0.02156037 = product of:
      0.06468111 = sum of:
        0.06468111 = product of:
          0.09702166 = sum of:
            0.06750664 = weight(_text_:network in 5272) [ClassicSimilarity], result of:
              0.06750664 = score(doc=5272,freq=4.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.34791988 = fieldWeight in 5272, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5272)
            0.029515022 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
              0.029515022 = score(doc=5272,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.19345059 = fieldWeight in 5272, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5272)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    This article describes the latest development of a generic approach to detecting and visualizing emerging trends and transient patterns in scientific literature. The work makes substantial theoretical and methodological contributions to progressive knowledge domain visualization. A specialty is conceptualized and visualized as a time-variant duality between two fundamental concepts in information science: research fronts and intellectual bases. A research front is defined as an emergent and transient grouping of concepts and underlying research issues. The intellectual base of a research front is its citation and co-citation footprint in scientific literature - an evolving network of scientific publications cited by research-front concepts. Kleinberg's (2002) burst-detection algorithm is adapted to identify emergent research-front concepts. Freeman's (1979) betweenness centrality metric is used to highlight potential pivotal points of paradigm shift over time. Two complementary visualization views are designed and implemented: cluster views and time-zone views. The contributions of the approach are that (a) the nature of an intellectual base is algorithmically and temporally identified by emergent research-front terms, (b) the value of a co-citation cluster is explicitly interpreted in terms of research-front concepts, and (c) visually prominent and algorithmically detected pivotal points substantially reduce the complexity of a visualized network. The modeling and visualization process is implemented in CiteSpace II, a Java application, and applied to the analysis of two research fields: mass extinction (1981-2004) and terrorism (1990-2003). Prominent trends and pivotal points in visualized networks were verified in collaboration with domain experts, who are the authors of pivotal-point articles. Practical implications of the work are discussed. A number of challenges and opportunities for future studies are identified.
    Date
    22. 7.2006 16:11:05
  14. Ohly, P.: Dimensions of globality : a bibliometric analysis (2016) 0.02
    0.02108372 = product of:
      0.06325116 = sum of:
        0.06325116 = product of:
          0.09487674 = sum of:
            0.047652703 = weight(_text_:29 in 4942) [ClassicSimilarity], result of:
              0.047652703 = score(doc=4942,freq=2.0), product of:
                0.15326229 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.043569047 = queryNorm
                0.31092256 = fieldWeight in 4942, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4942)
            0.047224034 = weight(_text_:22 in 4942) [ClassicSimilarity], result of:
              0.047224034 = score(doc=4942,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.30952093 = fieldWeight in 4942, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4942)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Date
    20. 1.2019 11:22:31
    Source
    Knowledge organization for a sustainable world: challenges and perspectives for cultural, scientific, and technological sharing in a connected society : proceedings of the Fourteenth International ISKO Conference 27-29 September 2016, Rio de Janeiro, Brazil / organized by International Society for Knowledge Organization (ISKO), ISKO-Brazil, São Paulo State University ; edited by José Augusto Chaves Guimarães, Suellen Oliveira Milani, Vera Dodebei
  15. Zhao, R.; Wei, M.; Quan, W.: Evolution of think tanks studies in view of a scientometrics perspective (2017) 0.02
    0.020671291 = product of:
      0.062013872 = sum of:
        0.062013872 = product of:
          0.093020804 = sum of:
            0.057281278 = weight(_text_:network in 3843) [ClassicSimilarity], result of:
              0.057281278 = score(doc=3843,freq=2.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.29521978 = fieldWeight in 3843, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3843)
            0.035739526 = weight(_text_:29 in 3843) [ClassicSimilarity], result of:
              0.035739526 = score(doc=3843,freq=2.0), product of:
                0.15326229 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.043569047 = queryNorm
                0.23319192 = fieldWeight in 3843, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3843)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    The paper presents a scientometrics analysis of research work done on the emerging area of think tanks, which are regarded as a domain of information science. Research on think tanks started during the last century and in recent years has gained tremendous momentum. It is considered one of the most important emerging domains of research in information science. We have analyzed the research output data on think tanks during 2006-2016 indexed in the Web of KnowledgeT and Scopus®. Our study objectively explores the document co-citation clusters of 1,450 bibliographic records to identify the origin of think tanks and hot research specialties of the domain. CiteSpace was used to visualize the perspective of the think tanks domain. Pivotal articles, prominent authors, active disciplines and institutions have been identified by network analysis. This article describes the latest development of a generic approach to detect and visualize emerging trends and transient patterns in think tanks.
    Date
    29. 9.2017 18:46:06
  16. Tonta, Y.: Scholarly communication and the use of networked information sources (1996) 0.02
    0.020599846 = product of:
      0.061799537 = sum of:
        0.061799537 = product of:
          0.092699304 = sum of:
            0.057281278 = weight(_text_:network in 6389) [ClassicSimilarity], result of:
              0.057281278 = score(doc=6389,freq=2.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.29521978 = fieldWeight in 6389, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6389)
            0.035418026 = weight(_text_:22 in 6389) [ClassicSimilarity], result of:
              0.035418026 = score(doc=6389,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.23214069 = fieldWeight in 6389, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6389)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Examines the use of networked information sources in scholarly communication. Networked information sources are defined broadly to cover: documents and images stored on electronic network hosts; data files; newsgroups; listservs; online information services and electronic periodicals. Reports results of a survey to determine how heavily, if at all, networked information sources are cited in scholarly printed periodicals published in 1993 and 1994. 27 printed periodicals, representing a wide range of subjects and the most influential periodicals in their fields, were identified through the Science Citation Index and Social Science Citation Index Journal Citation Reports. 97 articles were selected for further review and references, footnotes and bibliographies were checked for references to networked information sources. Only 2 articles were found to contain such references. Concludes that, although networked information sources facilitate scholars' work to a great extent during the research process, scholars have yet to incorporate such sources in the bibliographies of their published articles
    Source
    IFLA journal. 22(1996) no.3, S.240-245
  17. Frandsen, T.F.; Nicolaisen, J.: ¬The ripple effect : citation chain reactions of a nobel prize (2013) 0.02
    0.020599846 = product of:
      0.061799537 = sum of:
        0.061799537 = product of:
          0.092699304 = sum of:
            0.057281278 = weight(_text_:network in 654) [ClassicSimilarity], result of:
              0.057281278 = score(doc=654,freq=2.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.29521978 = fieldWeight in 654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.046875 = fieldNorm(doc=654)
            0.035418026 = weight(_text_:22 in 654) [ClassicSimilarity], result of:
              0.035418026 = score(doc=654,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.23214069 = fieldWeight in 654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=654)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper explores the possible citation chain reactions of a Nobel Prize using the mathematician Robert J. Aumann as a case example. The results show that the award of the Nobel Prize in 2005 affected not only the citations to his work, but also affected the citations to the references in his scientific oeuvre. The results indicate that the spillover effect is almost as powerful as the effect itself. We are consequently able to document a ripple effect in which the awarding of the Nobel Prize ignites a citation chain reaction to Aumann's scientific oeuvre and to the references in its nearest citation network. The effect is discussed using innovation decision process theory as a point of departure to identify the factors that created a bandwagon effect leading to the reported observations.
    Date
    22. 3.2013 16:21:09
  18. Kumar, S.: Co-authorship networks : a review of the literature (2015) 0.02
    0.020599846 = product of:
      0.061799537 = sum of:
        0.061799537 = product of:
          0.092699304 = sum of:
            0.057281278 = weight(_text_:network in 2586) [ClassicSimilarity], result of:
              0.057281278 = score(doc=2586,freq=2.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.29521978 = fieldWeight in 2586, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2586)
            0.035418026 = weight(_text_:22 in 2586) [ClassicSimilarity], result of:
              0.035418026 = score(doc=2586,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.23214069 = fieldWeight in 2586, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2586)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The purpose of this paper is to attempt to provide a review of the growing literature on co-authorship networks and the research gaps that may be investigated for future studies in this field. Design/methodology/approach - The existing literature on co-authorship networks was identified, evaluated and interpreted. Narrative review style was followed. Findings - Co-authorship, a proxy of research collaboration, is a key mechanism that links different sets of talent to produce a research output. Co-authorship could also be seen from the perspective of social networks. An in-depth analysis of such knowledge networks provides an opportunity to investigate its structure. Patterns of these relationships could reveal, for example, the mechanism that shapes our scientific community. The study provides a review of the expanding literature on co-authorship networks. Originality/value - This is one of the first comprehensive reviews of network-based studies on co-authorship. The field is fast evolving, opening new gaps for potential research. The study identifies some of these gaps.
    Date
    20. 1.2015 18:30:22
  19. Ridenour, L.: Boundary objects : measuring gaps and overlap between research areas (2016) 0.02
    0.020599846 = product of:
      0.061799537 = sum of:
        0.061799537 = product of:
          0.092699304 = sum of:
            0.057281278 = weight(_text_:network in 2835) [ClassicSimilarity], result of:
              0.057281278 = score(doc=2835,freq=2.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.29521978 = fieldWeight in 2835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2835)
            0.035418026 = weight(_text_:22 in 2835) [ClassicSimilarity], result of:
              0.035418026 = score(doc=2835,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.23214069 = fieldWeight in 2835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2835)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    The aim of this paper is to develop methodology to determine conceptual overlap between research areas. It investigates patterns of terminology usage in scientific abstracts as boundary objects between research specialties. Research specialties were determined by high-level classifications assigned by Thomson Reuters in their Essential Science Indicators file, which provided a strictly hierarchical classification of journals into 22 categories. Results from the query "network theory" were downloaded from the Web of Science. From this file, two top-level groups, economics and social sciences, were selected and topically analyzed to provide a baseline of similarity on which to run an informetric analysis. The Places & Spaces Map of Science (Klavans and Boyack 2007) was used to determine the proximity of disciplines to one another in order to select the two disciplines use in the analysis. Groups analyzed share common theories and goals; however, groups used different language to describe their research. It was found that 61% of term words were shared between the two groups.
  20. Lorentzen, D.G.: Bridging polarised Twitter discussions : the interactions of the users in the middle (2021) 0.02
    0.020599846 = product of:
      0.061799537 = sum of:
        0.061799537 = product of:
          0.092699304 = sum of:
            0.057281278 = weight(_text_:network in 182) [ClassicSimilarity], result of:
              0.057281278 = score(doc=182,freq=2.0), product of:
                0.19402927 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.043569047 = queryNorm
                0.29521978 = fieldWeight in 182, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.046875 = fieldNorm(doc=182)
            0.035418026 = weight(_text_:22 in 182) [ClassicSimilarity], result of:
              0.035418026 = score(doc=182,freq=2.0), product of:
                0.15257138 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043569047 = queryNorm
                0.23214069 = fieldWeight in 182, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=182)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose The purpose of the paper is to analyse the interactions of bridging users in Twitter discussions about vaccination. Design/methodology/approach Conversational threads were collected through filtering the Twitter stream using keywords and the most active participants in the conversations. Following data collection and anonymisation of tweets and user profiles, a retweet network was created to find users bridging the main clusters. Four conversations were selected, ranging from 456 to 1,983 tweets long, and then analysed through content analysis. Findings Although different opinions met in the discussions, a consensus was rarely built. Many sub-threads involved insults and criticism, and participants seemed not interested in shifting their positions. However, examples of reasoned discussions were also found. Originality/value The study analyses conversations on Twitter, which is rarely studied. The focus on the interactions of bridging users adds to the uniqueness of the paper.
    Date
    20. 1.2015 18:30:22

Years

Languages

  • e 294
  • d 19
  • ro 1
  • sp 1
  • More… Less…

Types

  • a 308
  • el 5
  • m 5
  • r 2
  • b 1
  • s 1
  • More… Less…