Search (11 results, page 1 of 1)

  • × author_ss:"Järvelin, K."
  1. Ingwersen, P.; Järvelin, K.: ¬The turn : integration of information seeking and retrieval in context (2005) 0.02
    0.020921927 = product of:
      0.041843854 = sum of:
        0.028773637 = weight(_text_:social in 1323) [ClassicSimilarity], result of:
          0.028773637 = score(doc=1323,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.1557648 = fieldWeight in 1323, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1323)
        0.0130702155 = product of:
          0.026140431 = sum of:
            0.026140431 = weight(_text_:aspects in 1323) [ClassicSimilarity], result of:
              0.026140431 = score(doc=1323,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.1248449 = fieldWeight in 1323, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1323)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The Turn analyzes the research of information seeking and retrieval (IS&R) and proposes a new direction of integrating research in these two areas: the fields should turn off their separate and narrow paths and construct a new avenue of research. An essential direction for this avenue is context as given in the subtitle Integration of Information Seeking and Retrieval in Context. Other essential themes in the book include: IS&R research models, frameworks and theories; search and works tasks and situations in context; interaction between humans and machines; information acquisition, relevance and information use; research design and methodology based on a structured set of explicit variables - all set into the holistic cognitive approach. The present monograph invites the reader into a construction project - there is much research to do for a contextual understanding of IS&R. The Turn represents a wide-ranging perspective of IS&R by providing a novel unique research framework, covering both individual and social aspects of information behavior, including the generation, searching, retrieval and use of information. Regarding traditional laboratory information retrieval research, the monograph proposes the extension of research toward actors, search and work tasks, IR interaction and utility of information. Regarding traditional information seeking research, it proposes the extension toward information access technology and work task contexts. The Turn is the first synthesis of research in the broad area of IS&R ranging from systems oriented laboratory IR research to social science oriented information seeking studies. TOC:Introduction.- The Cognitive Framework for Information.- The Development of Information Seeking Research.- Systems-Oriented Information Retrieval.- Cognitive and User-Oriented Information Retrieval.- The Integrated IS&R Research Framework.- Implications of the Cognitive Framework for IS&R.- Towards a Research Program.- Conclusion.- Definitions.- References.- Index.
  2. Vakkari, P.; Järvelin, K.; Chang, Y.-W.: ¬The association of disciplinary background with the evolution of topics and methods in Library and Information Science research 1995-2015 (2023) 0.02
    0.020915726 = product of:
      0.083662905 = sum of:
        0.083662905 = sum of:
          0.052280862 = weight(_text_:aspects in 998) [ClassicSimilarity], result of:
            0.052280862 = score(doc=998,freq=2.0), product of:
              0.20938325 = queryWeight, product of:
                4.5198684 = idf(docFreq=1308, maxDocs=44218)
                0.046325076 = queryNorm
              0.2496898 = fieldWeight in 998, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.5198684 = idf(docFreq=1308, maxDocs=44218)
                0.0390625 = fieldNorm(doc=998)
          0.031382043 = weight(_text_:22 in 998) [ClassicSimilarity], result of:
            0.031382043 = score(doc=998,freq=2.0), product of:
              0.16222252 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046325076 = queryNorm
              0.19345059 = fieldWeight in 998, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=998)
      0.25 = coord(1/4)
    
    Abstract
    The paper reports a longitudinal analysis of the topical and methodological development of Library and Information Science (LIS). Its focus is on the effects of researchers' disciplines on these developments. The study extends an earlier cross-sectional study (Vakkari et al., Journal of the Association for Information Science and Technology, 2022a, 73, 1706-1722) by a coordinated dataset representing a content analysis of articles published in 31 scholarly LIS journals in 1995, 2005, and 2015. It is novel in its coverage of authors' disciplines, topical and methodological aspects in a coordinated dataset spanning two decades thus allowing trend analysis. The findings include a shrinking trend in the share of LIS from 67 to 36% while Computer Science, and Business and Economics increase their share from 9 and 6% to 21 and 16%, respectively. The earlier cross-sectional study (Vakkari et al., Journal of the Association for Information Science and Technology, 2022a, 73, 1706-1722) for the year 2015 identified three topical clusters of LIS research, focusing on topical subfields, methodologies, and contributing disciplines. Correspondence analysis confirms their existence already in 1995 and traces their development through the decades. The contributing disciplines infuse their concepts, research questions, and approaches to LIS and may also subsume vital parts of LIS in their own structures of knowledge production.
    Date
    22. 6.2023 18:15:06
  3. Vakkari, P.; Järvelin, K.: Explanation in information seeking and retrieval (2005) 0.01
    0.011509455 = product of:
      0.04603782 = sum of:
        0.04603782 = weight(_text_:social in 643) [ClassicSimilarity], result of:
          0.04603782 = score(doc=643,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.24922368 = fieldWeight in 643, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.03125 = fieldNorm(doc=643)
      0.25 = coord(1/4)
    
    Abstract
    Information Retrieval (IR) is a research area both within Computer Science and Information Science. It has by and large two communities: a Computer Science oriented experimental approach and a user-oriented Information Science approach with a Social Science background. The communities hold a critical stance towards each other (e.g., Ingwersen, 1996), the latter suspecting the realism of the former, and the former suspecting the usefulness of the latter. Within Information Science the study of information seeking (IS) also has a Social Science background. There is a lot of research in each of these particular areas of information seeking and retrieval (IS&R). However, the three communities do not really communicate with each other. Why is this, and could the relationships be otherwise? Do the communities in fact belong together? Or perhaps each community is better off forgetting about the existence of the other two? We feel that the relationships between the research areas have not been properly analyzed. One way to analyze the relationships is to examine what each research area is trying to find out: which phenomena are being explained and how. We believe that IS&R research would benefit from being analytic about its frameworks, models and theories, not just at the level of meta-theories, but also much more concretely at the level of study designs. Over the years there have been calls for more context in the study of IS&R. Work tasks as well as cultural activities/interests have been proposed as the proper context for information access. For example, Wersig (1973) conceptualized information needs from the tasks perspective. He argued that in order to learn about information needs and seeking, one needs to take into account the whole active professional role of the individuals being investigated. Byström and Järvelin (1995) analysed IS processes in the light of tasks of varying complexity. Ingwersen (1996) discussed the role of tasks and their descriptions and problematic situations from a cognitive perspective on IR. Most recently, Vakkari (2003) reviewed task-based IR and Järvelin and Ingwersen (2004) proposed the extension of IS&R research toward the task context. Therefore there is much support to the task context, but how should it be applied in IS&R?
  4. Hansen, P.; Järvelin, K.: Collaborative Information Retrieval in an information-intensive domain (2005) 0.01
    0.011090445 = product of:
      0.04436178 = sum of:
        0.04436178 = product of:
          0.08872356 = sum of:
            0.08872356 = weight(_text_:aspects in 1040) [ClassicSimilarity], result of:
              0.08872356 = score(doc=1040,freq=4.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.42373765 = fieldWeight in 1040, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1040)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    In this article we investigate the expressions of collaborative activities within information seeking and retrieval processes (IS&R). Generally, information seeking and retrieval is regarded as an individual and isolated process in IR research. We assume that an IS&R situation is not merely an individual effort, but inherently involves various collaborative activities. We present empirical results from a real-life and information-intensive setting within the patent domain, showing that the patent task performance process involves highly collaborative aspects throughout the stages of the information seeking and retrieval process. Furthermore, we show that these activities may be categorised and related to different stages in an information seeking and retrieval process. Therefore, the assumption that information retrieval performance is purely individual needs to be reconsidered. Finally, we also propose a refined IR framework involving collaborative aspects.
  5. Pharo, N.; Järvelin, K.: ¬The SST method : a tool for analysing Web information search processes (2004) 0.01
    0.010173016 = product of:
      0.040692065 = sum of:
        0.040692065 = weight(_text_:social in 2533) [ClassicSimilarity], result of:
          0.040692065 = score(doc=2533,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 2533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2533)
      0.25 = coord(1/4)
    
    Abstract
    The article presents the search situation transition (SST) method for analysing Web information search (WIS) processes. The idea of the method is to analyse searching behaviour, the process, in detail and connect both the searchers' actions (captured in a log) and his/her intentions and goals, which log analysis never captures. On the other hand, ex post factor surveys, while popular in WIS research, cannot capture the actual search processes. The method is presented through three facets: its domain, its procedure, and its justification. The method's domain is presented in the form of a conceptual framework which maps five central categories that influence WIS processes; the searcher, the social/organisational environment, the work task, the search task, and the process itself. The method's procedure includes various techniques for data collection and analysis. The article presents examples from real WIS processes and shows how the method can be used to identify the interplay of the categories during the processes. It is shown that the method presents a new approach in information seeking and retrieval by focusing on the search process as a phenomenon and by explicating how different information seeking factors directly affect the search process.
  6. Sormunen, E.; Kekäläinen, J.; Koivisto, J.; Järvelin, K.: Document text characteristics affect the ranking of the most relevant documents by expanded structured queries (2001) 0.01
    0.009242038 = product of:
      0.036968153 = sum of:
        0.036968153 = product of:
          0.073936306 = sum of:
            0.073936306 = weight(_text_:aspects in 4487) [ClassicSimilarity], result of:
              0.073936306 = score(doc=4487,freq=4.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.35311472 = fieldWeight in 4487, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4487)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The increasing flood of documentary information through the Internet and other information sources challenges the developers of information retrieval systems. It is not enough that an IR system is able to make a distinction between relevant and non-relevant documents. The reduction of information overload requires that IR systems provide the capability of screening the most valuable documents out of the mass of potentially or marginally relevant documents. This paper introduces a new concept-based method to analyse the text characteristics of documents at varying relevance levels. The results of the document analysis were applied in an experiment on query expansion (QE) in a probabilistic IR system. Statistical differences in textual characteristics of highly relevant and less relevant documents were investigated by applying a facet analysis technique. In highly relevant documents a larger number of aspects of the request were discussed, searchable expressions for the aspects were distributed over a larger set of text paragraphs, and a larger set of unique expressions were used per aspect than in marginally relevant documents. A query expansion experiment verified that the findings of the text analysis can be exploited in formulating more effective queries for best match retrieval in the search for highly relevant documents. The results revealed that expanded queries with concept-based structures performed better than unexpanded queries or Ñnatural languageÒ queries. Further, it was shown that highly relevant documents benefit essentially more from the concept-based QE in ranking than marginally relevant documents.
  7. Halttunen, K.; Järvelin, K.: Assessing learning outcomes in two information retrieval learning environments (2005) 0.01
    0.007842129 = product of:
      0.031368516 = sum of:
        0.031368516 = product of:
          0.06273703 = sum of:
            0.06273703 = weight(_text_:aspects in 996) [ClassicSimilarity], result of:
              0.06273703 = score(doc=996,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.29962775 = fieldWeight in 996, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046875 = fieldNorm(doc=996)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    In order to design information retrieval (IR) learning environments and instruction, it is important to explore learning outcomes of different pedagogical solutions. Learning outcomes have seldom been evaluated in IR instruction. The particular focus of this study is the assessment of learning outcomes in an experimental, but naturalistic, learning environment compared to more traditional instruction. The 57 participants of an introductory course on IR were selected for this study, and the analysis illustrates their learning outcomes regarding both conceptual change and development of IR skill. Concept mapping of student essays was used to analyze conceptual change and log-files of search exercises provided data for performance assessment. Students in the experimental learning environment changed their conceptions more regarding linguistic aspects of IR and paid more emphasis on planning and management of search process. Performance assessment indicates that anchored instruction and scaffolding with an instructional tool, the IR Game, with performance feedback enables students to construct queries with fewer semantic knowledge errors also in operational IR systems.
  8. Ferro, N.; Silvello, G.; Keskustalo, H.; Pirkola, A.; Järvelin, K.: ¬The twist measure for IR evaluation : taking user's effort into account (2016) 0.01
    0.0065351077 = product of:
      0.026140431 = sum of:
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 2771) [ClassicSimilarity], result of:
              0.052280862 = score(doc=2771,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 2771, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2771)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    We present a novel measure for ranking evaluation, called Twist (t). It is a measure for informational intents, which handles both binary and graded relevance. t stems from the observation that searching is currently a that searching is currently taken for granted and it is natural for users to assume that search engines are available and work well. As a consequence, users may assume the utility they have in finding relevant documents, which is the focus of traditional measures, as granted. On the contrary, they may feel uneasy when the system returns nonrelevant documents because they are then forced to do additional work to get the desired information, and this causes avoidable effort. The latter is the focus of t, which evaluates the effectiveness of a system from the point of view of the effort required to the users to retrieve the desired information. We provide a formal definition of t, a demonstration of its properties, and introduce the notion of effort/gain plots, which complement traditional utility-based measures. By means of an extensive experimental evaluation, t is shown to grasp different aspects of system performances, to not require extensive and costly assessments, and to be a robust tool for detecting differences between systems.
  9. Järvelin, K.; Kristensen, J.; Niemi, T.; Sormunen, E.; Keskustalo, H.: ¬A deductive data model for query expansion (1996) 0.00
    0.004707306 = product of:
      0.018829225 = sum of:
        0.018829225 = product of:
          0.03765845 = sum of:
            0.03765845 = weight(_text_:22 in 2230) [ClassicSimilarity], result of:
              0.03765845 = score(doc=2230,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.23214069 = fieldWeight in 2230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2230)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR '96), Zürich, Switzerland, August 18-22, 1996. Eds.: H.P. Frei et al
  10. Saastamoinen, M.; Järvelin, K.: Search task features in work tasks of varying types and complexity (2017) 0.00
    0.004707306 = product of:
      0.018829225 = sum of:
        0.018829225 = product of:
          0.03765845 = sum of:
            0.03765845 = weight(_text_:22 in 3589) [ClassicSimilarity], result of:
              0.03765845 = score(doc=3589,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.23214069 = fieldWeight in 3589, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3589)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Information searching in practice seldom is an end in itself. In work, work task (WT) performance forms the context, which information searching should serve. Therefore, information retrieval (IR) systems development/evaluation should take the WT context into account. The present paper analyzes how WT features: task complexity and task types, affect information searching in authentic work: the types of information needs, search processes, and search media. We collected data on 22 information professionals in authentic work situations in three organization types: city administration, universities, and companies. The data comprise 286 WTs and 420 search tasks (STs). The data include transaction logs, video recordings, daily questionnaires, interviews. and observation. The data were analyzed quantitatively. Even if the participants used a range of search media, most STs were simple throughout the data, and up to 42% of WTs did not include searching. WT's effects on STs are not straightforward: different WT types react differently to WT complexity. Due to the simplicity of authentic searching, the WT/ST types in interactive IR experiments should be reconsidered.
  11. Näppilä, T.; Järvelin, K.; Niemi, T.: ¬A tool for data cube construction from structurally heterogeneous XML documents (2008) 0.00
    0.0039227554 = product of:
      0.015691021 = sum of:
        0.015691021 = product of:
          0.031382043 = sum of:
            0.031382043 = weight(_text_:22 in 1369) [ClassicSimilarity], result of:
              0.031382043 = score(doc=1369,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.19345059 = fieldWeight in 1369, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1369)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    9. 2.2008 17:22:42