Search (6 results, page 1 of 1)

  • × author_ss:"Liu, X."
  • × language_ss:"e"
  1. Chen, M.; Liu, X.; Qin, J.: Semantic relation extraction from socially-generated tags : a methodology for metadata generation (2008) 0.05
    0.053340625 = product of:
      0.10668125 = sum of:
        0.09099023 = weight(_text_:social in 2648) [ClassicSimilarity], result of:
          0.09099023 = score(doc=2648,freq=10.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.49257156 = fieldWeight in 2648, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2648)
        0.015691021 = product of:
          0.031382043 = sum of:
            0.031382043 = weight(_text_:22 in 2648) [ClassicSimilarity], result of:
              0.031382043 = score(doc=2648,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.19345059 = fieldWeight in 2648, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2648)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The growing predominance of social semantics in the form of tagging presents the metadata community with both opportunities and challenges as for leveraging this new form of information content representation and for retrieval. One key challenge is the absence of contextual information associated with these tags. This paper presents an experiment working with Flickr tags as an example of utilizing social semantics sources for enriching subject metadata. The procedure included four steps: 1) Collecting a sample of Flickr tags, 2) Calculating cooccurrences between tags through mutual information, 3) Tracing contextual information of tag pairs via Google search results, 4) Applying natural language processing and machine learning techniques to extract semantic relations between tags. The experiment helped us to build a context sentence collection from the Google search results, which was then processed by natural language processing and machine learning algorithms. This new approach achieved a reasonably good rate of accuracy in assigning semantic relations to tag pairs. This paper also explores the implications of this approach for using social semantics to enrich subject metadata.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
    Theme
    Social tagging
  2. Liu, X.; Turtle, H.: Real-time user interest modeling for real-time ranking (2013) 0.01
    0.01220762 = product of:
      0.04883048 = sum of:
        0.04883048 = weight(_text_:social in 1035) [ClassicSimilarity], result of:
          0.04883048 = score(doc=1035,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.26434162 = fieldWeight in 1035, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=1035)
      0.25 = coord(1/4)
    
    Abstract
    User interest as a very dynamic information need is often ignored in most existing information retrieval systems. In this research, we present the results of experiments designed to evaluate the performance of a real-time interest model (RIM) that attempts to identify the dynamic and changing query level interests regarding social media outputs. Unlike most existing ranking methods, our ranking approach targets calculation of the probability that user interest in the content of the document is subject to very dynamic user interest change. We describe 2 formulations of the model (real-time interest vector space and real-time interest language model) stemming from classical relevance ranking methods and develop a novel methodology for evaluating the performance of RIM using Amazon Mechanical Turk to collect (interest-based) relevance judgments on a daily basis. Our results show that the model usually, although not always, performs better than baseline results obtained from commercial web search engines. We identify factors that affect RIM performance and outline plans for future research.
  3. Liu, X.; Guo, C.; Zhang, L.: Scholar metadata and knowledge generation with human and artificial intelligence (2014) 0.01
    0.01220762 = product of:
      0.04883048 = sum of:
        0.04883048 = weight(_text_:social in 1287) [ClassicSimilarity], result of:
          0.04883048 = score(doc=1287,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.26434162 = fieldWeight in 1287, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=1287)
      0.25 = coord(1/4)
    
    Abstract
    Scholar metadata have traditionally centered on descriptive representations, which have been used as a foundation for scholarly publication repositories and academic information retrieval systems. In this article, we propose innovative and economic methods of generating knowledge-based structural metadata (structural keywords) using a combination of natural language processing-based machine-learning techniques and human intelligence. By allowing low-barrier participation through a social media system, scholars (both as authors and users) can participate in the metadata editing and enhancing process and benefit from more accurate and effective information retrieval. Our experimental web system ScholarWiki uses machine learning techniques, which automatically produce increasingly refined metadata by learning from the structural metadata contributed by scholars. The cumulated structural metadata add intelligence and automatically enhance and update recursively the quality of metadata, wiki pages, and the machine-learning model.
  4. Liu, X.; Kaza, S.; Zhang, P.; Chen, H.: Determining inventor status and its effect on knowledge diffusion : a study on nanotechnology literature from China, Russia, and India (2011) 0.01
    0.010173016 = product of:
      0.040692065 = sum of:
        0.040692065 = weight(_text_:social in 4468) [ClassicSimilarity], result of:
          0.040692065 = score(doc=4468,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 4468, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4468)
      0.25 = coord(1/4)
    
    Abstract
    In an increasingly global research landscape, it is important to identify the most prolific researchers in various institutions and their influence on the diffusion of knowledge. Knowledge diffusion within institutions is influenced by not just the status of individual researchers but also the collaborative culture that determines status. There are various methods to measure individual status, but few studies have compared them or explored the possible effects of different cultures on the status measures. In this article, we examine knowledge diffusion within science and technology-oriented research organizations. Using social network analysis metrics to measure individual status in large-scale coauthorship networks, we studied an individual's impact on the recombination of knowledge to produce innovation in nanotechnology. Data from the most productive and high-impact institutions in China (Chinese Academy of Sciences), Russia (Russian Academy of Sciences), and India (Indian Institutes of Technology) were used. We found that boundary-spanning individuals influenced knowledge diffusion in all countries. However, our results also indicate that cultural and institutional differences may influence knowledge diffusion.
  5. Liu, X.; Hu, M.; Xiao, B.S.; Shao, J.: Is my doctor around me? : Investigating the impact of doctors' presence on patients' review behaviors on an online health platform (2022) 0.01
    0.010173016 = product of:
      0.040692065 = sum of:
        0.040692065 = weight(_text_:social in 650) [ClassicSimilarity], result of:
          0.040692065 = score(doc=650,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 650, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=650)
      0.25 = coord(1/4)
    
    Abstract
    Patient-generated online reviews are well-established as an important source of information for people to evaluate doctors' quality and improve health outcomes. However, how such reviews are generated in the first place is not well examined. This study examines a hitherto unexplored social driver of online review generation-doctors' presence on online health platforms, which results in the reviewers (i.e., patients) and the reviewees (i.e., doctors) coexisting in the same medium. Drawing on the Stimulus-Organism-Response theory as an overarching framework, we advance hypotheses about the impact of doctors' presence on their patients' review behaviors, including review volume, review effort, and emotional expression. To achieve causal identification, we conduct a quasi-experiment on a large online health platform and employ propensity score matching and difference-in-difference estimation. Our findings show that doctors' presence increases their patients' review volume. Furthermore, doctors' presence motivates their patients to exert greater effort and express more positive emotions in the review text. The results also show that the presence of doctors with higher professional titles has a stronger effect on review volume than the presence of doctors with lower professional titles. Our findings offer important implications both for research and practice.
  6. Chen, Z.; Huang, Y.; Tian, J.; Liu, X.; Fu, K.; Huang, T.: Joint model for subsentence-level sentiment analysis with Markov logic (2015) 0.01
    0.0065351077 = product of:
      0.026140431 = sum of:
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 2210) [ClassicSimilarity], result of:
              0.052280862 = score(doc=2210,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 2210, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2210)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Sentiment analysis mainly focuses on the study of one's opinions that express positive or negative sentiments. With the explosive growth of web documents, sentiment analysis is becoming a hot topic in both academic research and system design. Fine-grained sentiment analysis is traditionally solved as a 2-step strategy, which results in cascade errors. Although joint models, such as joint sentiment/topic and maximum entropy (MaxEnt)/latent Dirichlet allocation, are proposed to tackle this problem of sentiment analysis, they focus on the joint learning of both aspects and sentiments. Thus, they are not appropriate to solve the cascade errors for sentiment analysis at the sentence or subsentence level. In this article, we present a novel jointly fine-grained sentiment analysis framework at the subsentence level with Markov logic. First, we divide the task into 2 separate stages (subjectivity classification and polarity classification). Then, the 2 separate stages are processed, respectively, with different feature sets, which are implemented by local formulas in Markov logic. Finally, global formulas in Markov logic are adopted to realize the interactions of the 2 separate stages. The joint inference of subjectivity and polarity helps prevent cascade errors. Experiments on a Chinese sentiment data set manifest that our joint model brings significant improvements.