Search (8 results, page 1 of 1)

  • × author_ss:"Szostak, R."
  1. Szostak, R.; Gnoli, C.: Classifying by phenomena, theories and methods : examples with focused social science theories (2008) 0.02
    0.020141546 = product of:
      0.08056618 = sum of:
        0.08056618 = weight(_text_:social in 2250) [ClassicSimilarity], result of:
          0.08056618 = score(doc=2250,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.43614143 = fieldWeight in 2250, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2250)
      0.25 = coord(1/4)
    
    Content
    This paper shows how a variety of theories employed across a range of social sciences could be classified in terms of theory type. In each case, notation within the Integrated Level Classification is provided. The paper thus illustrates how one key element of the Leon Manifesto that scholarly documents should be classified in terms of the theory(ies) applied can be achieved in practice.
  2. Szostak, R.: ¬A schema for unifying human science : interdisciplinary perspectives on culture (2003) 0.02
    0.017264182 = product of:
      0.06905673 = sum of:
        0.06905673 = weight(_text_:social in 803) [ClassicSimilarity], result of:
          0.06905673 = score(doc=803,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.3738355 = fieldWeight in 803, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=803)
      0.25 = coord(1/4)
    
    LCSH
    Social sciences
    Subject
    Social sciences
  3. Szostak, R.: Classifying for social diversity (2014) 0.02
    0.017264182 = product of:
      0.06905673 = sum of:
        0.06905673 = weight(_text_:social in 1378) [ClassicSimilarity], result of:
          0.06905673 = score(doc=1378,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.3738355 = fieldWeight in 1378, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=1378)
      0.25 = coord(1/4)
    
    Abstract
    This paper argues that a new approach to classification best supports and respects social diversity. We should want a classification that facilitates communication both within groups and across groups. We should also want no group to be privileged within the classification. These goals are best accomplished through a truly universal classification, grounded in basic concepts, that classifies works in terms of authorial perspective. Strategies for classifying perspective are discussed. The paper then addresses issues of classification structure. It follows a feminist approach to classification, and shows how a web-of-relations approach can be instantiated in a classification. Finally the paper turns to classificatory process. The key argument here is that much (perhaps all) of the concern regarding the possibility that classes can be subdivided into subclasses in multiple ways, each favored by different groups or individuals, simply vanish es within a web-of-relations approach. The reason is that most of these supposed ways of subdividing classes are in fact ways of subdividing different relationships among classes.
  4. Szostak, R.: Speaking truth to power in classification : response to Fox's review of my work; KO 39:4, 300 (2013) 0.01
    0.009414612 = product of:
      0.03765845 = sum of:
        0.03765845 = product of:
          0.0753169 = sum of:
            0.0753169 = weight(_text_:22 in 591) [ClassicSimilarity], result of:
              0.0753169 = score(doc=591,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.46428138 = fieldWeight in 591, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=591)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 2.2013 12:35:05
  5. Szostak, R.: Classifying science : phenomena, data, theory, method, practice (2004) 0.01
    0.008632091 = product of:
      0.034528363 = sum of:
        0.034528363 = weight(_text_:social in 325) [ClassicSimilarity], result of:
          0.034528363 = score(doc=325,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.18691775 = fieldWeight in 325, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0234375 = fieldNorm(doc=325)
      0.25 = coord(1/4)
    
    Abstract
    Classification is the essential first step in science. The study of science, as well as the practice of science, will thus benefit from a detailed classification of different types of science. In this book, science - defined broadly to include the social sciences and humanities - is first unpacked into its constituent elements: the phenomena studied, the data used, the theories employed, the methods applied, and the practices of scientists. These five elements are then classified in turn. Notably, the classifications of both theory types and methods allow the key strengths and weaknesses of different theories and methods to be readily discerned and compared. Connections across classifications are explored: should certain theories or phenomena be investigated only with certain methods? What is the proper function and form of scientific paradigms? Are certain common errors and biases in scientific practice associated with particular phenomena, data, theories, or methods? The classifications point to several ways of improving both specialized and interdisciplinary research and teaching, and especially of enhancing communication across communities of scholars. The classifications also support a superior system of document classification that would allow searches by theory and method used as well as causal links investigated.
    Footnote
    Rez. in: KO 32(2005) no.2, S.93-95 (H. Albrechtsen): "The book deals with mapping of the structures and contents of sciences, defined broadly to include the social sciences and the humanities. According to the author, the study of science, as well as the practice of science, could benefit from a detailed classification of different types of science. The book defines five universal constituents of the sciences: phenomena, data, theories, methods and practice. For each of these constituents, the author poses five questions, in the well-known 5W format: Who, What, Where, When, Why? - with the addition of the question How? (Szostak 2003). Two objectives of the author's endeavor stand out: 1) decision support for university curriculum development across disciplines and decision support for university students at advanced levels of education in selection of appropriate courses for their projects and to support cross-disciplinary inquiry for researchers and students; 2) decision support for researchers and students in scientific inquiry across disciplines, methods and theories. The main prospective audience of this book is university curriculum developers, university students and researchers, in that order of priority. The heart of the book is the chapters unfolding the author's ideas about how to classify phenomena and data, theory, method and practice, by use of the 5W inquiry model. . . .
  6. Szostak, R.: Classifying the humanities (2014) 0.01
    0.007842129 = product of:
      0.031368516 = sum of:
        0.031368516 = product of:
          0.06273703 = sum of:
            0.06273703 = weight(_text_:aspects in 1084) [ClassicSimilarity], result of:
              0.06273703 = score(doc=1084,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.29962775 = fieldWeight in 1084, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1084)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    A synthetic and universal approach to classification which allows the free combination of basic concepts would better address a variety of challenges in classifying both humanities scholarship and the works of art (including literature) that humanists study. Four key characteristics of this classificatory approach are stressed: a universal non-discipline-based approach, a synthetic approach that allows free combination of any concepts but stresses a sentence-like structure, emphasis on basic concepts (for which there are broadly shared understandings across groups and individuals), and finally classification of works also in terms of the theories, methods, and perspectives applied. The implications of these four characteristics, alone or (often) in concert, for many aspects of classification in the humanities are discussed. Several advantages are found both for classifying humanities scholarship and works of art. The se four characteristics are each found in the Basic Concepts Classification (which is briefly compared to other faceted classifications), but each could potentially be adopted elsewhere as well.
  7. Szostak, R.: Basic Concepts Classification (BCC) (2020) 0.01
    0.0065351077 = product of:
      0.026140431 = sum of:
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 5883) [ClassicSimilarity], result of:
              0.052280862 = score(doc=5883,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 5883, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5883)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The Basics Concept Classification (BCC) is a "universal" scheme: it attempts to encompass all areas of human understanding. Whereas most universal schemes are organized around scholarly disciplines, the BCC is instead organized around phenomena (things), the relationships that exist among phenomena, and the properties that phenomena and relators may possess. This structure allows the BCC to apply facet analysis without requiring the use of "facet indicators." The main motivation for the BCC was a recognition that existing classifications that are organized around disciplines serve interdisciplinary scholarship poorly. Complex concepts that might be understood quite differently across groups and individuals can generally be broken into basic concepts for which there is enough shared understanding for the purposes of classification. Documents, ideas, and objects are classified synthetically by combining entries from the schedules of phenomena, relators, and properties. The inclusion of separate schedules of-generally verb-like-relators is one of the most unusual aspects of the BCC. This (and the schedules of properties that serve as adjectives or adverbs) allows the production of sentence-like subject strings. Documents can then be classified in terms of the main arguments made in the document. BCC provides very precise descriptors of documents by combining phenomena, relators, and properties synthetically. The terminology employed in the BCC reduces terminological ambiguity. The BCC is still being developed and it needs to be fleshed out in certain respects. Yet it also needs to be applied; only in application can the feasibility and desirability of the classification be adequately assessed.
  8. Szostak, R.: Skepticism and knowledge organization (2014) 0.01
    0.005491857 = product of:
      0.021967428 = sum of:
        0.021967428 = product of:
          0.043934856 = sum of:
            0.043934856 = weight(_text_:22 in 1404) [ClassicSimilarity], result of:
              0.043934856 = score(doc=1404,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2708308 = fieldWeight in 1404, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1404)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik