Search (55 results, page 3 of 3)

  • × author_ss:"Thelwall, M."
  1. Kousha, K.; Thelwall, M.: News stories as evidence for research? : BBC citations from articles, Books, and Wikipedia (2017) 0.01
    0.010173016 = product of:
      0.040692065 = sum of:
        0.040692065 = weight(_text_:social in 3760) [ClassicSimilarity], result of:
          0.040692065 = score(doc=3760,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 3760, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3760)
      0.25 = coord(1/4)
    
    Abstract
    Although news stories target the general public and are sometimes inaccurate, they can serve as sources of real-world information for researchers. This article investigates the extent to which academics exploit journalism using content and citation analyses of online BBC News stories cited by Scopus articles. A total of 27,234 Scopus-indexed publications have cited at least one BBC News story, with a steady annual increase. Citations from the arts and humanities (2.8% of publications in 2015) and social sciences (1.5%) were more likely than citations from medicine (0.1%) and science (<0.1%). Surprisingly, half of the sampled Scopus-cited science and technology (53%) and medicine and health (47%) stories were based on academic research, rather than otherwise unpublished information, suggesting that researchers have chosen a lower-quality secondary source for their citations. Nevertheless, the BBC News stories that were most frequently cited by Scopus, Google Books, and Wikipedia introduced new information from many different topics, including politics, business, economics, statistics, and reports about events. Thus, news stories are mediating real-world knowledge into the academic domain, a potential cause for concern.
  2. Thelwall, M.; Kousha, K.: SlideShare presentations, citations, users, and trends : a professional site with academic and educational uses (2017) 0.01
    0.010173016 = product of:
      0.040692065 = sum of:
        0.040692065 = weight(_text_:social in 3766) [ClassicSimilarity], result of:
          0.040692065 = score(doc=3766,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 3766, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3766)
      0.25 = coord(1/4)
    
    Abstract
    SlideShare is a free social website that aims to help users distribute and find presentations. Owned by LinkedIn since 2012, it targets a professional audience but may give value to scholarship through creating a long-term record of the content of talks. This article tests this hypothesis by analyzing sets of general and scholarly related SlideShare documents using content and citation analysis and popularity statistics reported on the site. The results suggest that academics, students, and teachers are a minority of SlideShare uploaders, especially since 2010, with most documents not being directly related to scholarship or teaching. About two thirds of uploaded SlideShare documents are presentation slides, with the remainder often being files associated with presentations or video recordings of talks. SlideShare is therefore a presentation-centered site with a predominantly professional user base. Although a minority of the uploaded SlideShare documents are cited by, or cite, academic publications, probably too few articles are cited by SlideShare to consider extracting SlideShare citations for research evaluation. Nevertheless, scholars should consider SlideShare to be a potential source of academic and nonacademic information, particularly in library and information science, education, and business.
  3. Thelwall, M.; Stuart, D.: Web crawling ethics revisited : cost, privacy, and denial of service (2006) 0.01
    0.009149151 = product of:
      0.036596604 = sum of:
        0.036596604 = product of:
          0.07319321 = sum of:
            0.07319321 = weight(_text_:aspects in 6098) [ClassicSimilarity], result of:
              0.07319321 = score(doc=6098,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.3495657 = fieldWeight in 6098, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6098)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Ethical aspects of the employment of Web crawlers for information science research and other contexts are reviewed. The difference between legal and ethical uses of communications technologies is emphasized as well as the changing boundary between ethical and unethical conduct. A review of the potential impacts on Web site owners is used to underpin a new framework for ethical crawling, and it is argued that delicate human judgment is required for each individual case, with verdicts likely to change over time. Decisions can be based upon an approximate cost-benefit analysis, but it is crucial that crawler owners find out about the technological issues affecting the owners of the sites being crawled in order to produce an informed assessment.
  4. Thelwall, M.: Webometrics (2009) 0.01
    0.007842129 = product of:
      0.031368516 = sum of:
        0.031368516 = product of:
          0.06273703 = sum of:
            0.06273703 = weight(_text_:aspects in 3906) [ClassicSimilarity], result of:
              0.06273703 = score(doc=3906,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.29962775 = fieldWeight in 3906, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3906)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Webometrics is an information science field concerned with measuring aspects of the World Wide Web (WWW) for a variety of information science research goals. It came into existence about five years after the Web was formed and has since grown to become a significant aspect of information science, at least in terms of published research. Although some webometrics research has focused on the structure or evolution of the Web itself or the performance of commercial search engines, most has used data from the Web to shed light on information provision or online communication in various contexts. Most prominently, techniques have been developed to track, map, and assess Web-based informal scholarly communication, for example, in terms of the hyperlinks between academic Web sites or the online impact of digital repositories. In addition, a range of nonacademic issues and groups of Web users have also been analyzed.
  5. Thelwall, M.: Assessing web search engines : a webometric approach (2011) 0.01
    0.007842129 = product of:
      0.031368516 = sum of:
        0.031368516 = product of:
          0.06273703 = sum of:
            0.06273703 = weight(_text_:aspects in 10) [ClassicSimilarity], result of:
              0.06273703 = score(doc=10,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.29962775 = fieldWeight in 10, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046875 = fieldNorm(doc=10)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Information Retrieval (IR) research typically evaluates search systems in terms of the standard precision, recall and F-measures to weight the relative importance of precision and recall (e.g. van Rijsbergen, 1979). All of these assess the extent to which the system returns good matches for a query. In contrast, webometric measures are designed specifically for web search engines and are designed to monitor changes in results over time and various aspects of the internal logic of the way in which search engine select the results to be returned. This chapter introduces a range of webometric measurements and illustrates them with case studies of Google, Bing and Yahoo! This is a very fertile area for simple and complex new investigations into search engine results.
  6. Thelwall, M.; Vaughan, L.; Björneborn, L.: Webometrics (2004) 0.01
    0.0065351077 = product of:
      0.026140431 = sum of:
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 4279) [ClassicSimilarity], result of:
              0.052280862 = score(doc=4279,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 4279, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4279)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Webometrics, the quantitative study of Web-related phenomena, emerged from the realization that methods originally designed for bibliometric analysis of scientific journal article citation patterns could be applied to the Web, with commercial search engines providing the raw data. Almind and Ingwersen (1997) defined the field and gave it its name. Other pioneers included Rodriguez Gairin (1997) and Aguillo (1998). Larson (1996) undertook exploratory link structure analysis, as did Rousseau (1997). Webometrics encompasses research from fields beyond information science such as communication studies, statistical physics, and computer science. In this review we concentrate on link analysis, but also cover other aspects of webometrics, including Web log fle analysis. One theme that runs through this chapter is the messiness of Web data and the need for data cleansing heuristics. The uncontrolled Web creates numerous problems in the interpretation of results, for instance, from the automatic creation or replication of links. The loose connection between top-level domain specifications (e.g., com, edu, and org) and their actual content is also a frustrating problem. For example, many .com sites contain noncommercial content, although com is ostensibly the main commercial top-level domain. Indeed, a skeptical researcher could claim that obstacles of this kind are so great that all Web analyses lack value. As will be seen, one response to this view, a view shared by critics of evaluative bibliometrics, is to demonstrate that Web data correlate significantly with some non-Web data in order to prove that the Web data are not wholly random. A practical response has been to develop increasingly sophisticated data cleansing techniques and multiple data analysis methods.
  7. Thelwall, M.: Web indicators for research evaluation : a practical guide (2016) 0.01
    0.0065351077 = product of:
      0.026140431 = sum of:
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 3384) [ClassicSimilarity], result of:
              0.052280862 = score(doc=3384,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 3384, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3384)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    In recent years there has been an increasing demand for research evaluation within universities and other research-based organisations. In parallel, there has been an increasing recognition that traditional citation-based indicators are not able to reflect the societal impacts of research and are slow to appear. This has led to the creation of new indicators for different types of research impact as well as timelier indicators, mainly derived from the Web. These indicators have been called altmetrics, webometrics or just web metrics. This book describes and evaluates a range of web indicators for aspects of societal or scholarly impact, discusses the theory and practice of using and evaluating web indicators for research assessment and outlines practical strategies for obtaining many web indicators. In addition to describing impact indicators for traditional scholarly outputs, such as journal articles and monographs, it also covers indicators for videos, datasets, software and other non-standard scholarly outputs. The book describes strategies to analyse web indicators for individual publications as well as to compare the impacts of groups of publications. The practical part of the book includes descriptions of how to use the free software Webometric Analyst to gather and analyse web data. This book is written for information science undergraduate and Master?s students that are learning about alternative indicators or scientometrics as well as Ph.D. students and other researchers and practitioners using indicators to help assess research impact or to study scholarly communication.
  8. Thelwall, M.; Sud, P.: Do new research issues attract more citations? : a comparison between 25 Scopus subject categories (2021) 0.01
    0.0065351077 = product of:
      0.026140431 = sum of:
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 157) [ClassicSimilarity], result of:
              0.052280862 = score(doc=157,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 157, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=157)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Finding new ways to help researchers and administrators understand academic fields is an important task for information scientists. Given the importance of interdisciplinary research, it is essential to be aware of disciplinary differences in aspects of scholarship, such as the significance of recent changes in a field. This paper identifies potential changes in 25 subject categories through a term comparison of words in article titles, keywords and abstracts in 1 year compared to the previous 4 years. The scholarly influence of new research issues is indirectly assessed with a citation analysis of articles matching each trending term. While topic-related words dominate the top terms, style, national focus, and language changes are also evident. Thus, as reflected in Scopus, fields evolve along multiple dimensions. Moreover, while articles exploiting new issues are usually more cited in some fields, such as Organic Chemistry, they are usually less cited in others, including History. The possible causes of new issues being less cited include externally driven temporary factors, such as disease outbreaks, and internally driven temporary decisions, such as a deliberate emphasis on a single topic (e.g., through a journal special issue).
  9. Thelwall, M.; Ruschenburg, T.: Grundlagen und Forschungsfelder der Webometrie (2006) 0.01
    0.006276408 = product of:
      0.025105633 = sum of:
        0.025105633 = product of:
          0.050211266 = sum of:
            0.050211266 = weight(_text_:22 in 77) [ClassicSimilarity], result of:
              0.050211266 = score(doc=77,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.30952093 = fieldWeight in 77, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=77)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    4.12.2006 12:12:22
  10. Levitt, J.M.; Thelwall, M.: Citation levels and collaboration within library and information science (2009) 0.01
    0.0055476134 = product of:
      0.022190453 = sum of:
        0.022190453 = product of:
          0.044380907 = sum of:
            0.044380907 = weight(_text_:22 in 2734) [ClassicSimilarity], result of:
              0.044380907 = score(doc=2734,freq=4.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.27358043 = fieldWeight in 2734, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2734)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Collaboration is a major research policy objective, but does it deliver higher quality research? This study uses citation analysis to examine the Web of Science (WoS) Information Science & Library Science subject category (IS&LS) to ascertain whether, in general, more highly cited articles are more highly collaborative than other articles. It consists of two investigations. The first investigation is a longitudinal comparison of the degree and proportion of collaboration in five strata of citation; it found that collaboration in the highest four citation strata (all in the most highly cited 22%) increased in unison over time, whereas collaboration in the lowest citation strata (un-cited articles) remained low and stable. Given that over 40% of the articles were un-cited, it seems important to take into account the differences found between un-cited articles and relatively highly cited articles when investigating collaboration in IS&LS. The second investigation compares collaboration for 35 influential information scientists; it found that their more highly cited articles on average were not more highly collaborative than their less highly cited articles. In summary, although collaborative research is conducive to high citation in general, collaboration has apparently not tended to be essential to the success of current and former elite information scientists.
    Date
    22. 3.2009 12:43:51
  11. Thelwall, M.; Buckley, K.; Paltoglou, G.: Sentiment in Twitter events (2011) 0.00
    0.004707306 = product of:
      0.018829225 = sum of:
        0.018829225 = product of:
          0.03765845 = sum of:
            0.03765845 = weight(_text_:22 in 4345) [ClassicSimilarity], result of:
              0.03765845 = score(doc=4345,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.23214069 = fieldWeight in 4345, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4345)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2011 14:27:06
  12. Thelwall, M.; Maflahi, N.: Guideline references and academic citations as evidence of the clinical value of health research (2016) 0.00
    0.004707306 = product of:
      0.018829225 = sum of:
        0.018829225 = product of:
          0.03765845 = sum of:
            0.03765845 = weight(_text_:22 in 2856) [ClassicSimilarity], result of:
              0.03765845 = score(doc=2856,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.23214069 = fieldWeight in 2856, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2856)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    19. 3.2016 12:22:00
  13. Didegah, F.; Thelwall, M.: Co-saved, co-tweeted, and co-cited networks (2018) 0.00
    0.004707306 = product of:
      0.018829225 = sum of:
        0.018829225 = product of:
          0.03765845 = sum of:
            0.03765845 = weight(_text_:22 in 4291) [ClassicSimilarity], result of:
              0.03765845 = score(doc=4291,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.23214069 = fieldWeight in 4291, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4291)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    28. 7.2018 10:00:22
  14. Thelwall, M.; Sud, P.; Wilkinson, D.: Link and co-inlink network diagrams with URL citations or title mentions (2012) 0.00
    0.0039227554 = product of:
      0.015691021 = sum of:
        0.015691021 = product of:
          0.031382043 = sum of:
            0.031382043 = weight(_text_:22 in 57) [ClassicSimilarity], result of:
              0.031382043 = score(doc=57,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.19345059 = fieldWeight in 57, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=57)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    6. 4.2012 18:16:22
  15. Thelwall, M.: Are Mendeley reader counts high enough for research evaluations when articles are published? (2017) 0.00
    0.0039227554 = product of:
      0.015691021 = sum of:
        0.015691021 = product of:
          0.031382043 = sum of:
            0.031382043 = weight(_text_:22 in 3806) [ClassicSimilarity], result of:
              0.031382043 = score(doc=3806,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.19345059 = fieldWeight in 3806, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3806)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22