Search (2 results, page 1 of 1)

  • × theme_ss:"Automatisches Indexieren"
  • × year_i:[2020 TO 2030}
  1. Giesselbach, S.; Estler-Ziegler, T.: Dokumente schneller analysieren mit Künstlicher Intelligenz (2021) 0.01
    0.010173016 = product of:
      0.040692065 = sum of:
        0.040692065 = weight(_text_:social in 128) [ClassicSimilarity], result of:
          0.040692065 = score(doc=128,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 128, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=128)
      0.25 = coord(1/4)
    
    Abstract
    Künstliche Intelligenz (KI) und natürliches Sprachverstehen (natural language understanding/NLU) verändern viele Aspekte unseres Alltags und unserer Arbeitsweise. Besondere Prominenz erlangte NLU durch Sprachassistenten wie Siri, Alexa und Google Now. NLU bietet Firmen und Einrichtungen das Potential, Prozesse effizienter zu gestalten und Mehrwert aus textuellen Inhalten zu schöpfen. So sind NLU-Lösungen in der Lage, komplexe, unstrukturierte Dokumente inhaltlich zu erschließen. Für die semantische Textanalyse hat das NLU-Team des IAIS Sprachmodelle entwickelt, die mit Deep-Learning-Verfahren trainiert werden. Die NLU-Suite analysiert Dokumente, extrahiert Eckdaten und erstellt bei Bedarf sogar eine strukturierte Zusammenfassung. Mit diesen Ergebnissen, aber auch über den Inhalt der Dokumente selbst, lassen sich Dokumente vergleichen oder Texte mit ähnlichen Informationen finden. KI-basierten Sprachmodelle sind der klassischen Verschlagwortung deutlich überlegen. Denn sie finden nicht nur Texte mit vordefinierten Schlagwörtern, sondern suchen intelligent nach Begriffen, die in ähnlichem Zusammenhang auftauchen oder als Synonym gebraucht werden. Der Vortrag liefert eine Einordnung der Begriffe "Künstliche Intelligenz" und "Natural Language Understanding" und zeigt Möglichkeiten, Grenzen, aktuelle Forschungsrichtungen und Methoden auf. Anhand von Praxisbeispielen wird anschließend demonstriert, wie NLU zur automatisierten Belegverarbeitung, zur Katalogisierung von großen Datenbeständen wie Nachrichten und Patenten und zur automatisierten thematischen Gruppierung von Social Media Beiträgen und Publikationen genutzt werden kann.
  2. Villaespesa, E.; Crider, S.: ¬A critical comparison analysis between human and machine-generated tags for the Metropolitan Museum of Art's collection (2021) 0.01
    0.0065351077 = product of:
      0.026140431 = sum of:
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 341) [ClassicSimilarity], result of:
              0.052280862 = score(doc=341,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 341, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=341)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Purpose Based on the highlights of The Metropolitan Museum of Art's collection, the purpose of this paper is to examine the similarities and differences between the subject keywords tags assigned by the museum and those produced by three computer vision systems. Design/methodology/approach This paper uses computer vision tools to generate the data and the Getty Research Institute's Art and Architecture Thesaurus (AAT) to compare the subject keyword tags. Findings This paper finds that there are clear opportunities to use computer vision technologies to automatically generate tags that expand the terms used by the museum. This brings a new perspective to the collection that is different from the traditional art historical one. However, the study also surfaces challenges about the accuracy and lack of context within the computer vision results. Practical implications This finding has important implications on how these machine-generated tags complement the current taxonomies and vocabularies inputted in the collection database. In consequence, the museum needs to consider the selection process for choosing which computer vision system to apply to their collection. Furthermore, they also need to think critically about the kind of tags they wish to use, such as colors, materials or objects. Originality/value The study results add to the rapidly evolving field of computer vision within the art information context and provide recommendations of aspects to consider before selecting and implementing these technologies.

Languages

Types