Search (158 results, page 1 of 8)

  • × theme_ss:"Informetrie"
  • × year_i:[2010 TO 2020}
  1. Herb, U.; Beucke, D.: ¬Die Zukunft der Impact-Messung : Social Media, Nutzung und Zitate im World Wide Web (2013) 0.18
    0.17970666 = product of:
      0.35941333 = sum of:
        0.294306 = weight(_text_:2f in 2188) [ClassicSimilarity], result of:
          0.294306 = score(doc=2188,freq=2.0), product of:
            0.3927445 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046325076 = queryNorm
            0.7493574 = fieldWeight in 2188, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0625 = fieldNorm(doc=2188)
        0.06510731 = weight(_text_:social in 2188) [ClassicSimilarity], result of:
          0.06510731 = score(doc=2188,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.3524555 = fieldWeight in 2188, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0625 = fieldNorm(doc=2188)
      0.5 = coord(2/4)
    
    Content
    Vgl. unter: https://www.leibniz-science20.de%2Fforschung%2Fprojekte%2Faltmetrics-in-verschiedenen-wissenschaftsdisziplinen%2F&ei=2jTgVaaXGcK4Udj1qdgB&usg=AFQjCNFOPdONj4RKBDf9YDJOLuz3lkGYlg&sig2=5YI3KWIGxBmk5_kv0P_8iQ.
  2. Xu, C.; Ma, B.; Chen, X.; Ma, F.: Social tagging in the scholarly world (2013) 0.09
    0.09445435 = product of:
      0.1889087 = sum of:
        0.16276826 = weight(_text_:social in 1091) [ClassicSimilarity], result of:
          0.16276826 = score(doc=1091,freq=32.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.88113874 = fieldWeight in 1091, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1091)
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 1091) [ClassicSimilarity], result of:
              0.052280862 = score(doc=1091,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 1091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1091)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The number of research studies on social tagging has increased rapidly in the past years, but few of them highlight the characteristics and research trends in social tagging. A set of 862 academic documents relating to social tagging and published from 2005 to 2011 was thus examined using bibliometric analysis as well as the social network analysis technique. The results show that social tagging, as a research area, develops rapidly and attracts an increasing number of new entrants. There are no key authors, publication sources, or research groups that dominate the research domain of social tagging. Research on social tagging appears to focus mainly on the following three aspects: (a) components and functions of social tagging (e.g., tags, tagging objects, and tagging network), (b) taggers' behaviors and interface design, and (c) tags' organization and usage in social tagging. The trend suggest that more researchers turn to the latter two integrated with human computer interface and information retrieval, although the first aspect is the fundamental one in social tagging. Also, more studies relating to social tagging pay attention to multimedia tagging objects and not only text tagging. Previous research on social tagging was limited to a few subject domains such as information science and computer science. As an interdisciplinary research area, social tagging is anticipated to attract more researchers from different disciplines. More practical applications, especially in high-tech companies, is an encouraging research trend in social tagging.
    Theme
    Social tagging
  3. Costas, R.; Zahedi, Z.; Wouters, P.: ¬The thematic orientation of publications mentioned on social media : large-scale disciplinary comparison of social media metrics with citations (2015) 0.08
    0.07832624 = product of:
      0.15665248 = sum of:
        0.14096145 = weight(_text_:social in 2598) [ClassicSimilarity], result of:
          0.14096145 = score(doc=2598,freq=24.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.7630886 = fieldWeight in 2598, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2598)
        0.015691021 = product of:
          0.031382043 = sum of:
            0.031382043 = weight(_text_:22 in 2598) [ClassicSimilarity], result of:
              0.031382043 = score(doc=2598,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.19345059 = fieldWeight in 2598, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2598)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - The purpose of this paper is to analyze the disciplinary orientation of scientific publications that were mentioned on different social media platforms, focussing on their differences and similarities with citation counts. Design/methodology/approach - Social media metrics and readership counts, associated with 500,216 publications and their citation data from the Web of Science database, were collected from Altmetric.com and Mendeley. Results are presented through descriptive statistical analyses together with science maps generated with VOSviewer. Findings - The results confirm Mendeley as the most prevalent social media source with similar characteristics to citations in their distribution across fields and their density in average values per publication. The humanities, natural sciences, and engineering disciplines have a much lower presence of social media metrics. Twitter has a stronger focus on general medicine and social sciences. Other sources (blog, Facebook, Google+, and news media mentions) are more prominent in regards to multidisciplinary journals. Originality/value - This paper reinforces the relevance of Mendeley as a social media source for analytical purposes from a disciplinary perspective, being particularly relevant for the social sciences (together with Twitter). Key implications for the use of social media metrics on the evaluation of research performance (e.g. the concentration of some social media metrics, such as blogs, news items, etc., around multidisciplinary journals) are identified.
    Date
    20. 1.2015 18:30:22
    Footnote
    Teil eines Special Issue: Social Media Metrics in Scholarly Communication: exploring tweets, blogs, likes and other altmetrics.
  4. Mohammadi , E.; Thelwall, M.: Mendeley readership altmetrics for the social sciences and humanities : research evaluation and knowledge flows (2014) 0.05
    0.05376228 = product of:
      0.10752456 = sum of:
        0.08138413 = weight(_text_:social in 2190) [ClassicSimilarity], result of:
          0.08138413 = score(doc=2190,freq=8.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.44056937 = fieldWeight in 2190, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2190)
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 2190) [ClassicSimilarity], result of:
              0.052280862 = score(doc=2190,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 2190, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2190)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Although there is evidence that counting the readers of an article in the social reference site, Mendeley, may help to capture its research impact, the extent to which this is true for different scientific fields is unknown. In this study, we compare Mendeley readership counts with citations for different social sciences and humanities disciplines. The overall correlation between Mendeley readership counts and citations for the social sciences was higher than for the humanities. Low and medium correlations between Mendeley bookmarks and citation counts in all the investigated disciplines suggest that these measures reflect different aspects of research impact. Mendeley data were also used to discover patterns of information flow between scientific fields. Comparing information flows based on Mendeley bookmarking data and cross-disciplinary citation analysis for the disciplines revealed substantial similarities and some differences. Thus, the evidence from this study suggests that Mendeley readership data could be used to help capture knowledge transfer across scientific disciplines, especially for people that read but do not author articles, as well as giving impact evidence at an earlier stage than is possible with citation counts.
  5. Hicks, D.; Wang, J.: Coverage and overlap of the new social sciences and humanities journal lists (2011) 0.05
    0.051703054 = product of:
      0.10340611 = sum of:
        0.08457688 = weight(_text_:social in 4192) [ClassicSimilarity], result of:
          0.08457688 = score(doc=4192,freq=6.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.45785317 = fieldWeight in 4192, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=4192)
        0.018829225 = product of:
          0.03765845 = sum of:
            0.03765845 = weight(_text_:22 in 4192) [ClassicSimilarity], result of:
              0.03765845 = score(doc=4192,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.23214069 = fieldWeight in 4192, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4192)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This is a study of coverage and overlap in second-generation social sciences and humanities journal lists, with attention paid to curation and the judgment of scholarliness. We identify four factors underpinning coverage shortfalls: journal language, country, publisher size, and age. Analyzing these factors turns our attention to the process of assessing a journal as scholarly, which is a necessary foundation for every list of scholarly journals. Although scholarliness should be a quality inherent in the journal, coverage falls short because groups assessing scholarliness have different perspectives on the social sciences and humanities literature. That the four factors shape perspectives on the literature points to a deeper problem of fragmentation within the scholarly community. We propose reducing this fragmentation as the best method to reduce coverage shortfalls.
    Date
    22. 1.2011 13:21:28
  6. Stuart, D.: Web metrics for library and information professionals (2014) 0.05
    0.04943224 = product of:
      0.09886448 = sum of:
        0.08056618 = weight(_text_:social in 2274) [ClassicSimilarity], result of:
          0.08056618 = score(doc=2274,freq=16.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.43614143 = fieldWeight in 2274, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2274)
        0.018298302 = product of:
          0.036596604 = sum of:
            0.036596604 = weight(_text_:aspects in 2274) [ClassicSimilarity], result of:
              0.036596604 = score(doc=2274,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.17478286 = fieldWeight in 2274, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=2274)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This is a practical guide to using web metrics to measure impact and demonstrate value. The web provides an opportunity to collect a host of different metrics, from those associated with social media accounts and websites to more traditional research outputs. This book is a clear guide for library and information professionals as to what web metrics are available and how to assess and use them to make informed decisions and demonstrate value. As individuals and organizations increasingly use the web in addition to traditional publishing avenues and formats, this book provides the tools to unlock web metrics and evaluate the impact of this content. The key topics covered include: bibliometrics, webometrics and web metrics; data collection tools; evaluating impact on the web; evaluating social media impact; investigating relationships between actors; exploring traditional publications in a new environment; web metrics and the web of data; the future of web metrics and the library and information professional. The book will provide a practical introduction to web metrics for a wide range of library and information professionals, from the bibliometrician wanting to demonstrate the wider impact of a researcher's work than can be demonstrated through traditional citations databases, to the reference librarian wanting to measure how successfully they are engaging with their users on Twitter. It will be a valuable tool for anyone who wants to not only understand the impact of content, but demonstrate this impact to others within the organization and beyond.
    Content
    1. Introduction. MetricsIndicators -- Web metrics and Ranganathan's laws of library science -- Web metrics for the library and information professional -- The aim of this book -- The structure of the rest of this book -- 2. Bibliometrics, webometrics and web metrics. Web metrics -- Information science metrics -- Web analytics -- Relational and evaluative metrics -- Evaluative web metrics -- Relational web metrics -- Validating the results -- 3. Data collection tools. The anatomy of a URL, web links and the structure of the web -- Search engines 1.0 -- Web crawlers -- Search engines 2.0 -- Post search engine 2.0: fragmentation -- 4. Evaluating impact on the web. Websites -- Blogs -- Wikis -- Internal metrics -- External metrics -- A systematic approach to content analysis -- 5. Evaluating social media impact. Aspects of social network sites -- Typology of social network sites -- Research and tools for specific sites and services -- Other social network sites -- URL shorteners: web analytic links on any site -- General social media impact -- Sentiment analysis -- 6. Investigating relationships between actors. Social network analysis methods -- Sources for relational network analysis -- 7. Exploring traditional publications in a new environment. More bibliographic items -- Full text analysis -- Greater context -- 8. Web metrics and the web of data. The web of data -- Building the semantic web -- Implications of the web of data for web metrics -- Investigating the web of data today -- SPARQL -- Sindice -- LDSpider: an RDF web crawler -- 9. The future of web metrics and the library and information professional. How far we have come -- The future of web metrics -- The future of the library and information professional and web metrics.
  7. Yan, E.: Finding knowledge paths among scientific disciplines (2014) 0.05
    0.04633559 = product of:
      0.09267118 = sum of:
        0.07048073 = weight(_text_:social in 1534) [ClassicSimilarity], result of:
          0.07048073 = score(doc=1534,freq=6.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.3815443 = fieldWeight in 1534, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1534)
        0.022190453 = product of:
          0.044380907 = sum of:
            0.044380907 = weight(_text_:22 in 1534) [ClassicSimilarity], result of:
              0.044380907 = score(doc=1534,freq=4.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.27358043 = fieldWeight in 1534, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1534)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper uncovers patterns of knowledge dissemination among scientific disciplines. Although the transfer of knowledge is largely unobservable, citations from one discipline to another have been proven to be an effective proxy to study disciplinary knowledge flow. This study constructs a knowledge-flow network in which a node represents a Journal Citation Reports subject category and a link denotes the citations from one subject category to another. Using the concept of shortest path, several quantitative measurements are proposed and applied to a knowledge-flow network. Based on an examination of subject categories in Journal Citation Reports, this study indicates that social science domains tend to be more self-contained, so it is more difficult for knowledge from other domains to flow into them; at the same time, knowledge from science domains, such as biomedicine-, chemistry-, and physics-related domains, can access and be accessed by other domains more easily. This study also shows that social science domains are more disunified than science domains, because three fifths of the knowledge paths from one social science domain to another require at least one science domain to serve as an intermediate. This work contributes to discussions on disciplinarity and interdisciplinarity by providing empirical analysis.
    Date
    26.10.2014 20:22:22
  8. Kousha, K.; Thelwall, M.: ¬An automatic method for extracting citations from Google Books (2015) 0.04
    0.041843854 = product of:
      0.08368771 = sum of:
        0.057547275 = weight(_text_:social in 1658) [ClassicSimilarity], result of:
          0.057547275 = score(doc=1658,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.3115296 = fieldWeight in 1658, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1658)
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 1658) [ClassicSimilarity], result of:
              0.052280862 = score(doc=1658,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 1658, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1658)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Recent studies have shown that counting citations from books can help scholarly impact assessment and that Google Books (GB) is a useful source of such citation counts, despite its lack of a public citation index. Searching GB for citations produces approximate matches, however, and so its raw results need time-consuming human filtering. In response, this article introduces a method to automatically remove false and irrelevant matches from GB citation searches in addition to introducing refinements to a previous GB manual citation extraction method. The method was evaluated by manual checking of sampled GB results and comparing citations to about 14,500 monographs in the Thomson Reuters Book Citation Index (BKCI) against automatically extracted citations from GB across 24 subject areas. GB citations were 103% to 137% as numerous as BKCI citations in the humanities, except for tourism (72%) and linguistics (91%), 46% to 85% in social sciences, but only 8% to 53% in the sciences. In all cases, however, GB had substantially more citing books than did BKCI, with BKCI's results coming predominantly from journal articles. Moderate correlations between the GB and BKCI citation counts in social sciences and humanities, with most BKCI results coming from journal articles rather than books, suggests that they could measure the different aspects of impact, however.
  9. Haustein, S.; Sugimoto, C.; Larivière, V.: Social media in scholarly communication : Guest editorial (2015) 0.03
    0.034609746 = product of:
      0.06921949 = sum of:
        0.059804883 = weight(_text_:social in 3809) [ClassicSimilarity], result of:
          0.059804883 = score(doc=3809,freq=12.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.32375106 = fieldWeight in 3809, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3809)
        0.009414612 = product of:
          0.018829225 = sum of:
            0.018829225 = weight(_text_:22 in 3809) [ClassicSimilarity], result of:
              0.018829225 = score(doc=3809,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.116070345 = fieldWeight in 3809, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3809)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    One of the solutions to help scientists filter the most relevant publications and, thus, to stay current on developments in their fields during the transition from "little science" to "big science", was the introduction of citation indexing as a Wellsian "World Brain" (Garfield, 1964) of scientific information: It is too much to expect a research worker to spend an inordinate amount of time searching for the bibliographic descendants of antecedent papers. It would not be excessive to demand that the thorough scholar check all papers that have cited or criticized such papers, if they could be located quickly. The citation index makes this check practicable (Garfield, 1955, p. 108). In retrospective, citation indexing can be perceived as a pre-social web version of crowdsourcing, as it is based on the concept that the community of citing authors outperforms indexers in highlighting cognitive links between papers, particularly on the level of specific ideas and concepts (Garfield, 1983). Over the last 50 years, citation analysis and more generally, bibliometric methods, have developed from information retrieval tools to research evaluation metrics, where they are presumed to make scientific funding more efficient and effective (Moed, 2006). However, the dominance of bibliometric indicators in research evaluation has also led to significant goal displacement (Merton, 1957) and the oversimplification of notions of "research productivity" and "scientific quality", creating adverse effects such as salami publishing, honorary authorships, citation cartels, and misuse of indicators (Binswanger, 2015; Cronin and Sugimoto, 2014; Frey and Osterloh, 2006; Haustein and Larivière, 2015; Weingart, 2005).
    Furthermore, the rise of the web, and subsequently, the social web, has challenged the quasi-monopolistic status of the journal as the main form of scholarly communication and citation indices as the primary assessment mechanisms. Scientific communication is becoming more open, transparent, and diverse: publications are increasingly open access; manuscripts, presentations, code, and data are shared online; research ideas and results are discussed and criticized openly on blogs; and new peer review experiments, with open post publication assessment by anonymous or non-anonymous referees, are underway. The diversification of scholarly production and assessment, paired with the increasing speed of the communication process, leads to an increased information overload (Bawden and Robinson, 2008), demanding new filters. The concept of altmetrics, short for alternative (to citation) metrics, was created out of an attempt to provide a filter (Priem et al., 2010) and to steer against the oversimplification of the measurement of scientific success solely on the basis of number of journal articles published and citations received, by considering a wider range of research outputs and metrics (Piwowar, 2013). Although the term altmetrics was introduced in a tweet in 2010 (Priem, 2010), the idea of capturing traces - "polymorphous mentioning" (Cronin et al., 1998, p. 1320) - of scholars and their documents on the web to measure "impact" of science in a broader manner than citations was introduced years before, largely in the context of webometrics (Almind and Ingwersen, 1997; Thelwall et al., 2005):
    There will soon be a critical mass of web-based digital objects and usage statistics on which to model scholars' communication behaviors - publishing, posting, blogging, scanning, reading, downloading, glossing, linking, citing, recommending, acknowledging - and with which to track their scholarly influence and impact, broadly conceived and broadly felt (Cronin, 2005, p. 196). A decade after Cronin's prediction and five years after the coining of altmetrics, the time seems ripe to reflect upon the role of social media in scholarly communication. This Special Issue does so by providing an overview of current research on the indicators and metrics grouped under the umbrella term of altmetrics, on their relationships with traditional indicators of scientific activity, and on the uses that are made of the various social media platforms - on which these indicators are based - by scientists of various disciplines.
    Date
    20. 1.2015 18:30:22
    Footnote
    Teil eines Special Issue: Social Media Metrics in Scholarly Communication: exploring tweets, blogs, likes and other altmetrics. Der Beitrag ist frei verfügbar.
  10. Torres-Salinas, D.; Gorraiz, J.; Robinson-Garcia, N.: ¬The insoluble problems of books : what does Altmetric.com have to offer? (2018) 0.03
    0.034468703 = product of:
      0.068937406 = sum of:
        0.056384586 = weight(_text_:social in 4633) [ClassicSimilarity], result of:
          0.056384586 = score(doc=4633,freq=6.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.30523545 = fieldWeight in 4633, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.03125 = fieldNorm(doc=4633)
        0.012552816 = product of:
          0.025105633 = sum of:
            0.025105633 = weight(_text_:22 in 4633) [ClassicSimilarity], result of:
              0.025105633 = score(doc=4633,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.15476047 = fieldWeight in 4633, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4633)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Purpose The purpose of this paper is to analyze the capabilities, functionalities and appropriateness of Altmetric.com as a data source for the bibliometric analysis of books in comparison to PlumX. Design/methodology/approach The authors perform an exploratory analysis on the metrics the Altmetric Explorer for Institutions, platform offers for books. The authors use two distinct data sets of books. On the one hand, the authors analyze the Book Collection included in Altmetric.com. On the other hand, the authors use Clarivate's Master Book List, to analyze Altmetric.com's capabilities to download and merge data with external databases. Finally, the authors compare the findings with those obtained in a previous study performed in PlumX. Findings Altmetric.com combines and orderly tracks a set of data sources combined by DOI identifiers to retrieve metadata from books, being Google Books its main provider. It also retrieves information from commercial publishers and from some Open Access initiatives, including those led by university libraries, such as Harvard Library. We find issues with linkages between records and mentions or ISBN discrepancies. Furthermore, the authors find that automatic bots affect greatly Wikipedia mentions to books. The comparison with PlumX suggests that none of these tools provide a complete picture of the social attention generated by books and are rather complementary than comparable tools. Practical implications This study targets different audience which can benefit from the findings. First, bibliometricians and researchers who seek for alternative sources to develop bibliometric analyses of books, with a special focus on the Social Sciences and Humanities fields. Second, librarians and research managers who are the main clients to which these tools are directed. Third, Altmetric.com itself as well as other altmetric providers who might get a better understanding of the limitations users encounter and improve this promising tool. Originality/value This is the first study to analyze Altmetric.com's functionalities and capabilities for providing metric data for books and to compare results from this platform, with those obtained via PlumX.
    Content
    Teil eines Special Issue: Scholarly books and their evaluation context in the social sciences and humanities. Vgl.: https://doi.org/10.1108/AJIM-06-2018-0152.
    Date
    20. 1.2015 18:30:22
  11. Ajiferuke, I.; Lu, K.; Wolfram, D.: ¬A comparison of citer and citation-based measure outcomes for multiple disciplines (2010) 0.03
    0.033829853 = product of:
      0.067659706 = sum of:
        0.04883048 = weight(_text_:social in 4000) [ClassicSimilarity], result of:
          0.04883048 = score(doc=4000,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.26434162 = fieldWeight in 4000, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=4000)
        0.018829225 = product of:
          0.03765845 = sum of:
            0.03765845 = weight(_text_:22 in 4000) [ClassicSimilarity], result of:
              0.03765845 = score(doc=4000,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.23214069 = fieldWeight in 4000, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4000)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Author research impact was examined based on citer analysis (the number of citers as opposed to the number of citations) for 90 highly cited authors grouped into three broad subject areas. Citer-based outcome measures were also compared with more traditional citation-based measures for levels of association. The authors found that there are significant differences in citer-based outcomes among the three broad subject areas examined and that there is a high degree of correlation between citer and citation-based measures for all measures compared, except for two outcomes calculated for the social sciences. Citer-based measures do produce slightly different rankings of authors based on citer counts when compared to more traditional citation counts. Examples are provided. Citation measures may not adequately address the influence, or reach, of an author because citations usually do not address the origin of the citation beyond self-citations.
    Date
    28. 9.2010 12:54:22
  12. Kumar, S.: Co-authorship networks : a review of the literature (2015) 0.03
    0.033829853 = product of:
      0.067659706 = sum of:
        0.04883048 = weight(_text_:social in 2586) [ClassicSimilarity], result of:
          0.04883048 = score(doc=2586,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.26434162 = fieldWeight in 2586, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=2586)
        0.018829225 = product of:
          0.03765845 = sum of:
            0.03765845 = weight(_text_:22 in 2586) [ClassicSimilarity], result of:
              0.03765845 = score(doc=2586,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.23214069 = fieldWeight in 2586, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2586)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - The purpose of this paper is to attempt to provide a review of the growing literature on co-authorship networks and the research gaps that may be investigated for future studies in this field. Design/methodology/approach - The existing literature on co-authorship networks was identified, evaluated and interpreted. Narrative review style was followed. Findings - Co-authorship, a proxy of research collaboration, is a key mechanism that links different sets of talent to produce a research output. Co-authorship could also be seen from the perspective of social networks. An in-depth analysis of such knowledge networks provides an opportunity to investigate its structure. Patterns of these relationships could reveal, for example, the mechanism that shapes our scientific community. The study provides a review of the expanding literature on co-authorship networks. Originality/value - This is one of the first comprehensive reviews of network-based studies on co-authorship. The field is fast evolving, opening new gaps for potential research. The study identifies some of these gaps.
    Date
    20. 1.2015 18:30:22
  13. Ridenour, L.: Boundary objects : measuring gaps and overlap between research areas (2016) 0.03
    0.033829853 = product of:
      0.067659706 = sum of:
        0.04883048 = weight(_text_:social in 2835) [ClassicSimilarity], result of:
          0.04883048 = score(doc=2835,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.26434162 = fieldWeight in 2835, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=2835)
        0.018829225 = product of:
          0.03765845 = sum of:
            0.03765845 = weight(_text_:22 in 2835) [ClassicSimilarity], result of:
              0.03765845 = score(doc=2835,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.23214069 = fieldWeight in 2835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2835)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The aim of this paper is to develop methodology to determine conceptual overlap between research areas. It investigates patterns of terminology usage in scientific abstracts as boundary objects between research specialties. Research specialties were determined by high-level classifications assigned by Thomson Reuters in their Essential Science Indicators file, which provided a strictly hierarchical classification of journals into 22 categories. Results from the query "network theory" were downloaded from the Web of Science. From this file, two top-level groups, economics and social sciences, were selected and topically analyzed to provide a baseline of similarity on which to run an informetric analysis. The Places & Spaces Map of Science (Klavans and Boyack 2007) was used to determine the proximity of disciplines to one another in order to select the two disciplines use in the analysis. Groups analyzed share common theories and goals; however, groups used different language to describe their research. It was found that 61% of term words were shared between the two groups.
  14. Thelwall, M.; Sud, P.: Mendeley readership counts : an investigation of temporal and disciplinary differences (2016) 0.03
    0.033829853 = product of:
      0.067659706 = sum of:
        0.04883048 = weight(_text_:social in 3211) [ClassicSimilarity], result of:
          0.04883048 = score(doc=3211,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.26434162 = fieldWeight in 3211, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=3211)
        0.018829225 = product of:
          0.03765845 = sum of:
            0.03765845 = weight(_text_:22 in 3211) [ClassicSimilarity], result of:
              0.03765845 = score(doc=3211,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.23214069 = fieldWeight in 3211, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3211)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Scientists and managers using citation-based indicators to help evaluate research cannot evaluate recent articles because of the time needed for citations to accrue. Reading occurs before citing, however, and so it makes sense to count readers rather than citations for recent publications. To assess this, Mendeley readers and citations were obtained for articles from 2004 to late 2014 in five broad categories (agriculture, business, decision science, pharmacy, and the social sciences) and 50 subcategories. In these areas, citation counts tended to increase with every extra year since publication, and readership counts tended to increase faster initially but then stabilize after about 5 years. The correlation between citations and readers was also higher for longer time periods, stabilizing after about 5 years. Although there were substantial differences between broad fields and smaller differences between subfields, the results confirm the value of Mendeley reader counts as early scientific impact indicators.
    Date
    16.11.2016 11:07:22
  15. Ni, C.; Sugimoto, C.R.; Jiang, J.: Venue-author-coupling : a measure for identifying disciplines through author communities (2013) 0.03
    0.03341625 = product of:
      0.0668325 = sum of:
        0.040692065 = weight(_text_:social in 607) [ClassicSimilarity], result of:
          0.040692065 = score(doc=607,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 607, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=607)
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 607) [ClassicSimilarity], result of:
              0.052280862 = score(doc=607,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 607, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=607)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Conceptualizations of disciplinarity often focus on the social aspects of disciplines; that is, disciplines are defined by the set of individuals who participate in their activities and communications. However, operationalizations of disciplinarity often demarcate the boundaries of disciplines by standard classification schemes, which may be inflexible to changes in the participation profile of that discipline. To address this limitation, a metric called venue-author-coupling (VAC) is proposed and illustrated using journals from the Journal Citation Report's (JCR) library science and information science category. As JCRs are some of the most frequently used categories in bibliometric analyses, this allows for an examination of the extent to which the journals in JCR categories can be considered as proxies for disciplines. By extending the idea of bibliographic coupling, VAC identifies similarities among journals based on the similarities of their author profiles. The employment of this method using information science and library science journals provides evidence of four distinct subfields, that is, management information systems, specialized information and library science, library science-focused, and information science-focused research. The proposed VAC method provides a novel way to examine disciplinarity from the perspective of author communities.
  16. Sedhai, S.; Sun, A.: ¬An analysis of 14 Million tweets on hashtag-oriented spamming* (2017) 0.03
    0.03341625 = product of:
      0.0668325 = sum of:
        0.040692065 = weight(_text_:social in 3683) [ClassicSimilarity], result of:
          0.040692065 = score(doc=3683,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 3683, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3683)
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 3683) [ClassicSimilarity], result of:
              0.052280862 = score(doc=3683,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 3683, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3683)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Over the years, Twitter has become a popular platform for information dissemination and information gathering. However, the popularity of Twitter has attracted not only legitimate users but also spammers who exploit social graphs, popular keywords, and hashtags for malicious purposes. In this paper, we present a detailed analysis of the HSpam14 dataset, which contains 14 million tweets with spam and ham (i.e., nonspam) labels, to understand spamming activities on Twitter. The primary focus of this paper is to analyze various aspects of spam on Twitter based on hashtags, tweet contents, and user profiles, which are useful for both tweet-level and user-level spam detection. First, we compare the usage of hashtags in spam and ham tweets based on frequency, position, orthography, and co-occurrence. Second, for content-based analysis, we analyze the variations in word usage, metadata, and near-duplicate tweets. Third, for user-based analysis, we investigate user profile information. In our study, we validate that spammers use popular hashtags to promote their tweets. We also observe differences in the usage of words in spam and ham tweets. Spam tweets are more likely to be emphasized using exclamation points and capitalized words. Furthermore, we observe that spammers use multiple accounts to post near-duplicate tweets to promote their services and products. Unlike spammers, legitimate users are likely to provide more information such as their locations and personal descriptions in their profiles. In summary, this study presents a comprehensive analysis of hashtags, tweet contents, and user profiles in Twitter spamming.
  17. Sugimoto, C.R.; Work, S.; Larivière, V.; Haustein, S.: Scholarly use of social media and altmetrics : A review of the literature (2017) 0.03
    0.029902441 = product of:
      0.119609766 = sum of:
        0.119609766 = weight(_text_:social in 3781) [ClassicSimilarity], result of:
          0.119609766 = score(doc=3781,freq=12.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.6475021 = fieldWeight in 3781, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=3781)
      0.25 = coord(1/4)
    
    Abstract
    Social media has become integrated into the fabric of the scholarly communication system in fundamental ways, principally through scholarly use of social media platforms and the promotion of new indicators on the basis of interactions with these platforms. Research and scholarship in this area has accelerated since the coining and subsequent advocacy for altmetrics-that is, research indicators based on social media activity. This review provides an extensive account of the state-of-the art in both scholarly use of social media and altmetrics. The review consists of 2 main parts: the first examines the use of social media in academia, reviewing the various functions these platforms have in the scholarly communication process and the factors that affect this use. The second part reviews empirical studies of altmetrics, discussing the various interpretations of altmetrics, data collection and methodological limitations, and differences according to platform. The review ends with a critical discussion of the implications of this transformation in the scholarly communication system.
  18. Milard, B.; Tanguy, L.: Citations in scientific texts : do social relations matter? (2018) 0.03
    0.029902441 = product of:
      0.119609766 = sum of:
        0.119609766 = weight(_text_:social in 4547) [ClassicSimilarity], result of:
          0.119609766 = score(doc=4547,freq=12.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.6475021 = fieldWeight in 4547, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=4547)
      0.25 = coord(1/4)
    
    Abstract
    This article presents an investigation of the role of social relations in the writing of scientific articles through the study of in-text citations. Does the fact that the author of an article knows the author whose work he or she cites have an impact on the context of the citation? Because citations are commonly used as criteria for research evaluation, it is important to question their social background to better understand how it impacts textual features. We studied a collection of science articles (N?=?123) from 5 disciplines and interviewed their authors (N?=?84) to: (a) identify the social relations between citing and cited authors; and (b) measure the correlation between a set of features related to in-text citations (N?=?6,956) and the identified social relations. Our pioneering work, mixing sociological and linguistic results, shows that social relations between authors can partly explain the variations of citations in terms of frequency, position and textual context.
  19. Zhou, P.; Su, X.; Leydesdorff, L.: ¬A comparative study on communication structures of Chinese journals in the social sciences (2010) 0.03
    0.027297068 = product of:
      0.10918827 = sum of:
        0.10918827 = weight(_text_:social in 3580) [ClassicSimilarity], result of:
          0.10918827 = score(doc=3580,freq=10.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.59108585 = fieldWeight in 3580, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=3580)
      0.25 = coord(1/4)
    
    Abstract
    We argue that the communication structures in the Chinese social sciences have not yet been sufficiently reformed. Citation patterns among Chinese domestic journals in three subject areas - political science and Marxism, library and information science, and economics - are compared with their counterparts internationally. Like their colleagues in the natural and life sciences, Chinese scholars in the social sciences provide fewer references to journal publications than their international counterparts; like their international colleagues, social scientists provide fewer references than natural sciences. The resulting citation networks, therefore, are sparse. Nevertheless, the citation structures clearly suggest that the Chinese social sciences are far less specialized in terms of disciplinary delineations than their international counterparts. Marxism studies are more established than political science in China. In terms of the impact of the Chinese political system on academic fields, disciplines closely related to the political system are less specialized than those weakly related. In the discussion section, we explore reasons that may cause the current stagnation and provide policy recommendations.
  20. Chang, Y.-W.; Huang, M.-H.: ¬A study of the evolution of interdisciplinarity in library and information science : using three bibliometric methods (2012) 0.03
    0.026329588 = product of:
      0.10531835 = sum of:
        0.10531835 = sum of:
          0.073936306 = weight(_text_:aspects in 4959) [ClassicSimilarity], result of:
            0.073936306 = score(doc=4959,freq=4.0), product of:
              0.20938325 = queryWeight, product of:
                4.5198684 = idf(docFreq=1308, maxDocs=44218)
                0.046325076 = queryNorm
              0.35311472 = fieldWeight in 4959, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                4.5198684 = idf(docFreq=1308, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4959)
          0.031382043 = weight(_text_:22 in 4959) [ClassicSimilarity], result of:
            0.031382043 = score(doc=4959,freq=2.0), product of:
              0.16222252 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046325076 = queryNorm
              0.19345059 = fieldWeight in 4959, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4959)
      0.25 = coord(1/4)
    
    Abstract
    This study uses three bibliometric methods: direct citation, bibliographic coupling, and co-authorship analysis, to investigate interdisciplinary changes in library and information science (LIS) from 1978 to 2007. The results reveal that LIS researchers most frequently cite publications in their own discipline. In addition, half of all co-authors of LIS articles are affiliated with LIS-related institutes. The results confirm that the degree of interdisciplinarity within LIS has increased, particularly co-authorship. However, the study found sources of direct citations in LIS articles are widely distributed across 30 disciplines, but co-authors of LIS articles are distributed across only 25 disciplines. The degree of interdisciplinarity was found ranging from 0.61 to 0.82 with citation to references in all articles being the highest and that of co-authorship being the lowest. Percentages of contribution attributable to LIS show a decreasing tendency based on the results of direct citation and co-authorship analysis, but an increasing tendency based on those of bibliographic coupling analysis. Such differences indicate each of the three bibliometric methods has its strength and provides insights respectively for viewing various aspects of interdisciplinarity, suggesting the use of no single bibliometric method can reveal all aspects of interdisciplinarity due to its multifaceted nature.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.1, S.22-33

Languages

  • e 151
  • d 6
  • More… Less…

Types

  • a 151
  • m 5
  • el 3
  • s 3
  • More… Less…