Search (45 results, page 1 of 3)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  1. Wongthontham, P.; Abu-Salih, B.: Ontology-based approach for semantic data extraction from social big data : state-of-the-art and research directions (2018) 0.02
    0.02441524 = product of:
      0.09766096 = sum of:
        0.09766096 = weight(_text_:social in 4097) [ClassicSimilarity], result of:
          0.09766096 = score(doc=4097,freq=8.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.52868325 = fieldWeight in 4097, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=4097)
      0.25 = coord(1/4)
    
    Abstract
    A challenge of managing and extracting useful knowledge from social media data sources has attracted much attention from academic and industry. To address this challenge, semantic analysis of textual data is focused in this paper. We propose an ontology-based approach to extract semantics of textual data and define the domain of data. In other words, we semantically analyse the social data at two levels i.e. the entity level and the domain level. We have chosen Twitter as a social channel challenge for a purpose of concept proof. Domain knowledge is captured in ontologies which are then used to enrich the semantics of tweets provided with specific semantic conceptual representation of entities that appear in the tweets. Case studies are used to demonstrate this approach. We experiment and evaluate our proposed approach with a public dataset collected from Twitter and from the politics domain. The ontology-based approach leverages entity extraction and concept mappings in terms of quantity and accuracy of concept identification.
  2. Hannech, A.: Système de recherche d'information étendue basé sur une projection multi-espaces (2018) 0.02
    0.023670457 = product of:
      0.047340915 = sum of:
        0.032553654 = weight(_text_:social in 4472) [ClassicSimilarity], result of:
          0.032553654 = score(doc=4472,freq=8.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.17622775 = fieldWeight in 4472, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.015625 = fieldNorm(doc=4472)
        0.014787261 = product of:
          0.029574523 = sum of:
            0.029574523 = weight(_text_:aspects in 4472) [ClassicSimilarity], result of:
              0.029574523 = score(doc=4472,freq=4.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.14124589 = fieldWeight in 4472, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.015625 = fieldNorm(doc=4472)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Dans d'autres cas, le profil de l'utilisateur peut être mal exploité pour extraire ou inférer ses nouveaux besoins en information. Ce problème est beaucoup plus accentué avec les requêtes ambigües. Lorsque plusieurs centres d'intérêt auxquels est liée une requête ambiguë sont identifiés dans le profil de l'utilisateur, le système se voit incapable de sélectionner les données pertinentes depuis ce profil pour répondre à la requête. Ceci a un impact direct sur la qualité des résultats fournis à cet utilisateur. Afin de remédier à quelques-unes de ces limitations, nous nous sommes intéressés dans ce cadre de cette thèse de recherche au développement de techniques destinées principalement à l'amélioration de la pertinence des résultats des SRIs actuels et à faciliter l'exploration de grandes collections de documents. Pour ce faire, nous proposons une solution basée sur un nouveau concept d'indexation et de recherche d'information appelé la projection multi-espaces. Cette proposition repose sur l'exploitation de différentes catégories d'information sémantiques et sociales qui permettent d'enrichir l'univers de représentation des documents et des requêtes de recherche en plusieurs dimensions d'interprétations. L'originalité de cette représentation est de pouvoir distinguer entre les différentes interprétations utilisées pour la description et la recherche des documents. Ceci donne une meilleure visibilité sur les résultats retournés et aide à apporter une meilleure flexibilité de recherche et d'exploration, en donnant à l'utilisateur la possibilité de naviguer une ou plusieurs vues de données qui l'intéressent le plus. En outre, les univers multidimensionnels de représentation proposés pour la description des documents et l'interprétation des requêtes de recherche aident à améliorer la pertinence des résultats de l'utilisateur en offrant une diversité de recherche/exploration qui aide à répondre à ses différents besoins et à ceux des autres différents utilisateurs. Cette étude exploite différents aspects liés à la recherche personnalisée et vise à résoudre les problèmes engendrés par l'évolution des besoins en information de l'utilisateur. Ainsi, lorsque le profil de cet utilisateur est utilisé par notre système, une technique est proposée et employée pour identifier les intérêts les plus représentatifs de ses besoins actuels dans son profil. Cette technique se base sur la combinaison de trois facteurs influents, notamment le facteur contextuel, fréquentiel et temporel des données. La capacité des utilisateurs à interagir, à échanger des idées et d'opinions, et à former des réseaux sociaux sur le Web, a amené les systèmes à s'intéresser aux types d'interactions de ces utilisateurs, au niveau d'interaction entre eux ainsi qu'à leurs rôles sociaux dans le système. Ces informations sociales sont abordées et intégrées dans ce travail de recherche. L'impact et la manière de leur intégration dans le processus de RI sont étudiés pour améliorer la pertinence des résultats.
    However, this assumption does not hold in all cases, the needs of the user evolve over time and can move away from his previous interests stored in his profile. In other cases, the user's profile may be misused to extract or infer new information needs. This problem is much more accentuated with ambiguous queries. When multiple POIs linked to a search query are identified in the user's profile, the system is unable to select the relevant data from that profile to respond to that request. This has a direct impact on the quality of the results provided to this user. In order to overcome some of these limitations, in this research thesis, we have been interested in the development of techniques aimed mainly at improving the relevance of the results of current SRIs and facilitating the exploration of major collections of documents. To do this, we propose a solution based on a new concept and model of indexing and information retrieval called multi-spaces projection. This proposal is based on the exploitation of different categories of semantic and social information that enrich the universe of document representation and search queries in several dimensions of interpretations. The originality of this representation is to be able to distinguish between the different interpretations used for the description and the search for documents. This gives a better visibility on the results returned and helps to provide a greater flexibility of search and exploration, giving the user the ability to navigate one or more views of data that interest him the most. In addition, the proposed multidimensional representation universes for document description and search query interpretation help to improve the relevance of the user's results by providing a diversity of research / exploration that helps meet his diverse needs and those of other different users. This study exploits different aspects that are related to the personalized search and aims to solve the problems caused by the evolution of the information needs of the user. Thus, when the profile of this user is used by our system, a technique is proposed and used to identify the interests most representative of his current needs in his profile. This technique is based on the combination of three influential factors, including the contextual, frequency and temporal factor of the data. The ability of users to interact, exchange ideas and opinions, and form social networks on the Web, has led systems to focus on the types of interactions these users have at the level of interaction between them as well as their social roles in the system. This social information is discussed and integrated into this research work. The impact and how they are integrated into the IR process are studied to improve the relevance of the results.
  3. Ingwersen, P.; Järvelin, K.: ¬The turn : integration of information seeking and retrieval in context (2005) 0.02
    0.020921927 = product of:
      0.041843854 = sum of:
        0.028773637 = weight(_text_:social in 1323) [ClassicSimilarity], result of:
          0.028773637 = score(doc=1323,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.1557648 = fieldWeight in 1323, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1323)
        0.0130702155 = product of:
          0.026140431 = sum of:
            0.026140431 = weight(_text_:aspects in 1323) [ClassicSimilarity], result of:
              0.026140431 = score(doc=1323,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.1248449 = fieldWeight in 1323, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1323)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The Turn analyzes the research of information seeking and retrieval (IS&R) and proposes a new direction of integrating research in these two areas: the fields should turn off their separate and narrow paths and construct a new avenue of research. An essential direction for this avenue is context as given in the subtitle Integration of Information Seeking and Retrieval in Context. Other essential themes in the book include: IS&R research models, frameworks and theories; search and works tasks and situations in context; interaction between humans and machines; information acquisition, relevance and information use; research design and methodology based on a structured set of explicit variables - all set into the holistic cognitive approach. The present monograph invites the reader into a construction project - there is much research to do for a contextual understanding of IS&R. The Turn represents a wide-ranging perspective of IS&R by providing a novel unique research framework, covering both individual and social aspects of information behavior, including the generation, searching, retrieval and use of information. Regarding traditional laboratory information retrieval research, the monograph proposes the extension of research toward actors, search and work tasks, IR interaction and utility of information. Regarding traditional information seeking research, it proposes the extension toward information access technology and work task contexts. The Turn is the first synthesis of research in the broad area of IS&R ranging from systems oriented laboratory IR research to social science oriented information seeking studies. TOC:Introduction.- The Cognitive Framework for Information.- The Development of Information Seeking Research.- Systems-Oriented Information Retrieval.- Cognitive and User-Oriented Information Retrieval.- The Integrated IS&R Research Framework.- Implications of the Cognitive Framework for IS&R.- Towards a Research Program.- Conclusion.- Definitions.- References.- Index.
  4. Bettencourt, N.; Silva, N.; Barroso, J.: Semantically enhancing recommender systems (2016) 0.02
    0.017264182 = product of:
      0.06905673 = sum of:
        0.06905673 = weight(_text_:social in 3374) [ClassicSimilarity], result of:
          0.06905673 = score(doc=3374,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.3738355 = fieldWeight in 3374, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=3374)
      0.25 = coord(1/4)
    
    Abstract
    As the amount of content and the number of users in social relationships is continually growing in the Internet, resource sharing and access policy management is difficult, time-consuming and error-prone. Cross-domain recommendation of private or protected resources managed and secured by each domain's specific access rules is impracticable due to private security policies and poor sharing mechanisms. This work focus on exploiting resource's content, user's preferences, users' social networks and semantic information to cross-relate different resources through their meta information using recommendation techniques that combine collaborative-filtering techniques with semantics annotations, by generating associations between resources. The semantic similarities established between resources are used on a hybrid recommendation engine that interprets user and resources' semantic information. The recommendation engine allows the promotion and discovery of unknown-unknown resources to users that could not even know about the existence of those resources thus providing means to solve the cross-domain recommendation of private or protected resources.
  5. Beaulieu, M.: Experiments on interfaces to support query expansion (1997) 0.01
    0.012938853 = product of:
      0.051755413 = sum of:
        0.051755413 = product of:
          0.10351083 = sum of:
            0.10351083 = weight(_text_:aspects in 4704) [ClassicSimilarity], result of:
              0.10351083 = score(doc=4704,freq=4.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.4943606 = fieldWeight in 4704, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4704)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Focuses on the user and human-computer interaction (HCI) aspects of the research based on the Okapi text retrieval system. Describes 3 experiments using different approaches to query expansion, highlighting the relationship between the functionality of a system and different interface designs. These experiments involve both automatic and interactive query expansion, and both character based and GUI (graphical user interface) environments. The effectiveness of the search interaction for query expansion depends on resolving opposing interface and functional aspects, e.g. automatic vs. interactive query expansion, explicit vs. implicit use of a thesaurus, and document vs. query space
  6. Moreira, W.; Martínez-Ávila, D.: Concept relationships in knowledge organization systems : elements for analysis and common research among fields (2018) 0.01
    0.012938853 = product of:
      0.051755413 = sum of:
        0.051755413 = product of:
          0.10351083 = sum of:
            0.10351083 = weight(_text_:aspects in 5166) [ClassicSimilarity], result of:
              0.10351083 = score(doc=5166,freq=4.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.4943606 = fieldWeight in 5166, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5166)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Knowledge organization systems have been studied in several fields and for different and complementary aspects. Among the aspects that concentrate common interests, in this article we highlight those related to the terminological and conceptual relationships among the components of any knowledge organization system. This research aims to contribute to the critical analysis of knowledge organization systems, especially ontologies, thesauri, and classification systems, by the comprehension of its similarities and differences when dealing with concepts and their ways of relating to each other as well as to the conceptual design that is adopted.
  7. Boyack, K.W.; Wylie,B.N.; Davidson, G.S.: Information Visualization, Human-Computer Interaction, and Cognitive Psychology : Domain Visualizations (2002) 0.01
    0.011095227 = product of:
      0.044380907 = sum of:
        0.044380907 = product of:
          0.088761814 = sum of:
            0.088761814 = weight(_text_:22 in 1352) [ClassicSimilarity], result of:
              0.088761814 = score(doc=1352,freq=4.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.54716086 = fieldWeight in 1352, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1352)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:17:40
  8. Smeaton, A.F.; Rijsbergen, C.J. van: ¬The retrieval effects of query expansion on a feedback document retrieval system (1983) 0.01
    0.010983714 = product of:
      0.043934856 = sum of:
        0.043934856 = product of:
          0.08786971 = sum of:
            0.08786971 = weight(_text_:22 in 2134) [ClassicSimilarity], result of:
              0.08786971 = score(doc=2134,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.5416616 = fieldWeight in 2134, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=2134)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    30. 3.2001 13:32:22
  9. Ng, K.B.: Toward a theoretical framework for understanding the relationship between situated action and planned action models of behavior in information retrieval contexts : contributions from phenomenology (2002) 0.01
    0.010173016 = product of:
      0.040692065 = sum of:
        0.040692065 = weight(_text_:social in 2588) [ClassicSimilarity], result of:
          0.040692065 = score(doc=2588,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 2588, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2588)
      0.25 = coord(1/4)
    
    Abstract
    In human-computer interaction (HCI), a successful interaction sequence can take its own momentum and drift away from what the user has originally planned. However, this does not mean that planned actions play no important role in the overall performance. In this paper, the author tries to construct a line of argument to demonstrate that it is impossible to consider an action without an a priori plan, even according to the phenomenological position taken for granted by the situated action theory. Based on the phenomenological analysis of problematic situations and typification the author argues that, just like "situated-ness", "planned-ness" of an action should also be understood in the context of the situation. Successful plan can be developed and executed for familiar context. The first part of the paper treats information seeking behavior as a special type of social action and applies Alfred Schutz's phenomenology of sociology to understand the importance and necessity of plan. The second part reports results of a quasi-experiment focusing on plan deviation within an information seeking context. It was found that when the searcher's situation changed from problematic to non-problematic, the degree of plan deviation decreased significantly. These results support the argument proposed in the first part of the paper.
  10. Horch, A.; Kett, H.; Weisbecker, A.: Semantische Suchsysteme für das Internet : Architekturen und Komponenten semantischer Suchmaschinen (2013) 0.01
    0.010173016 = product of:
      0.040692065 = sum of:
        0.040692065 = weight(_text_:social in 4063) [ClassicSimilarity], result of:
          0.040692065 = score(doc=4063,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 4063, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4063)
      0.25 = coord(1/4)
    
    Abstract
    In der heutigen Zeit nimmt die Flut an Informationen exponentiell zu. In dieser »Informationsexplosion« entsteht täglich eine unüberschaubare Menge an neuen Informationen im Web: Beispielsweise 430 deutschsprachige Artikel bei Wikipedia, 2,4 Mio. Tweets bei Twitter und 12,2 Mio. Kommentare bei Facebook. Während in Deutschland vor einigen Jahren noch Google als nahezu einzige Suchmaschine beim Zugriff auf Informationen im Web genutzt wurde, nehmen heute die u.a. in Social Media veröffentlichten Meinungen und damit die Vorauswahl sowie Bewertung von Informationen einzelner Experten und Meinungsführer an Bedeutung zu. Aber wie können themenspezifische Informationen nun effizient für konkrete Fragestellungen identifiziert und bedarfsgerecht aufbereitet und visualisiert werden? Diese Studie gibt einen Überblick über semantische Standards und Formate, die Prozesse der semantischen Suche, Methoden und Techniken semantischer Suchsysteme, Komponenten zur Entwicklung semantischer Suchmaschinen sowie den Aufbau bestehender Anwendungen. Die Studie erläutert den prinzipiellen Aufbau semantischer Suchsysteme und stellt Methoden der semantischen Suche vor. Zudem werden Softwarewerkzeuge vorgestellt, mithilfe derer einzelne Funktionalitäten von semantischen Suchmaschinen realisiert werden können. Abschließend erfolgt die Betrachtung bestehender semantischer Suchmaschinen zur Veranschaulichung der Unterschiede der Systeme im Aufbau sowie in der Funktionalität.
  11. Bayer, O.; Höhfeld, S.; Josbächer, F.; Kimm, N.; Kradepohl, I.; Kwiatkowski, M.; Puschmann, C.; Sabbagh, M.; Werner, N.; Vollmer, U.: Evaluation of an ontology-based knowledge-management-system : a case study of Convera RetrievalWare 8.0 (2005) 0.01
    0.009242038 = product of:
      0.036968153 = sum of:
        0.036968153 = product of:
          0.073936306 = sum of:
            0.073936306 = weight(_text_:aspects in 624) [ClassicSimilarity], result of:
              0.073936306 = score(doc=624,freq=4.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.35311472 = fieldWeight in 624, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=624)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    With RetrievalWare 8.0(TM) the American company Convera offers an elaborated software in the range of Information Retrieval, Information Indexing and Knowledge Management. Convera promises the possibility of handling different file formats in many different languages. Regarding comparable products one innovation is to be stressed particularly: the possibility of the preparation as well as integration of an ontology. One tool of the software package is useful in order to produce ontologies manually, to process existing ontologies and to import the very. The processing of search results is also to be mentioned. By means of categorization strategies search results can be classified dynamically and presented in personalized representations. This study presents an evaluation of the functions and components of the system. Technological aspects and modes of operation under the surface of Convera RetrievalWare will be analysed, with a focus on the creation of libraries and thesauri, and the problems posed by the integration of an existing thesaurus. Broader aspects such as usability and system ergonomics are integrated in the examination as well.
  12. Brezillon, P.; Saker, I.: Modeling context in information seeking (1999) 0.01
    0.008138414 = product of:
      0.032553654 = sum of:
        0.032553654 = weight(_text_:social in 276) [ClassicSimilarity], result of:
          0.032553654 = score(doc=276,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.17622775 = fieldWeight in 276, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.03125 = fieldNorm(doc=276)
      0.25 = coord(1/4)
    
    Abstract
    Context plays an important role in a number of domains where reasoning intervenes as in understanding, interpretation, diagnosis, etc. The reason is that reasoning activities heavily rely on a background (or experience) that is generally not made explicit and that gives a contextual dimension to knowledge. On the Web in December 1996, AItaVista gave more than 710000 pages containing the word context, when concept gives only 639000 references. A clear definition of this word stays to be found. There are several formal definitions of this concept (references are given in Brézillon, 1996): a set of preferences and/or beliefs, an infinite and only partially known collection of assumptions, a list of attributes, the product of an interpretation, possible worlds, assumptions under which a statement is true or false. One faces the same situation at the programming level: a collection of context schemas; a path in information retrieval; slots in object-oriented languages; a special, buffer-like data structure; a window on the screen, buttons which are functional customisable and shareable; an interpreter which controls the system's activity; the characteristics of the situation and the goals of the knowledge use; or entities (things or events) related in a certain way that permits to listen what is said and what is not said. Context is often assimilated at a set of restrictions (e.g., preconditions) that limit access to parts of the applications. The first works considering context explicitly are in Natural Language. Researchers in this domain focus on the linguistic context, sometimes associated with other types of contexts as: semantic context, cognitive context, physical and perceptual context, and social context (Bunt, 1997).
  13. Rekabsaz, N. et al.: Toward optimized multimodal concept indexing (2016) 0.01
    0.007845511 = product of:
      0.031382043 = sum of:
        0.031382043 = product of:
          0.062764086 = sum of:
            0.062764086 = weight(_text_:22 in 2751) [ClassicSimilarity], result of:
              0.062764086 = score(doc=2751,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.38690117 = fieldWeight in 2751, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2751)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    1. 2.2016 18:25:22
  14. Kozikowski, P. et al.: Support of part-whole relations in query answering (2016) 0.01
    0.007845511 = product of:
      0.031382043 = sum of:
        0.031382043 = product of:
          0.062764086 = sum of:
            0.062764086 = weight(_text_:22 in 2754) [ClassicSimilarity], result of:
              0.062764086 = score(doc=2754,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.38690117 = fieldWeight in 2754, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2754)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    1. 2.2016 18:25:22
  15. Marx, E. et al.: Exploring term networks for semantic search over RDF knowledge graphs (2016) 0.01
    0.007845511 = product of:
      0.031382043 = sum of:
        0.031382043 = product of:
          0.062764086 = sum of:
            0.062764086 = weight(_text_:22 in 3279) [ClassicSimilarity], result of:
              0.062764086 = score(doc=3279,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.38690117 = fieldWeight in 3279, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3279)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  16. Kopácsi, S. et al.: Development of a classification server to support metadata harmonization in a long term preservation system (2016) 0.01
    0.007845511 = product of:
      0.031382043 = sum of:
        0.031382043 = product of:
          0.062764086 = sum of:
            0.062764086 = weight(_text_:22 in 3280) [ClassicSimilarity], result of:
              0.062764086 = score(doc=3280,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.38690117 = fieldWeight in 3280, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3280)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  17. Khan, M.S.; Khor, S.: Enhanced Web document retrieval using automatic query expansion (2004) 0.01
    0.007842129 = product of:
      0.031368516 = sum of:
        0.031368516 = product of:
          0.06273703 = sum of:
            0.06273703 = weight(_text_:aspects in 2091) [ClassicSimilarity], result of:
              0.06273703 = score(doc=2091,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.29962775 = fieldWeight in 2091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2091)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The ever growing popularity of the Internet as a source of information, coupled with the accompanying growth in the number of documents made available through the World Wide Web, is leading to an increasing demand for more efficient and accurate information retrieval tools. Numerous techniques have been proposed and tried for improving the effectiveness of searching the World Wide Web for documents relevant to a given topic of interest. The specification of appropriate keywords and phrases by the user is crucial for the successful execution of a query as measured by the relevance of documents retrieved. Lack of users' knowledge an the search topic and their changing information needs often make it difficult for them to find suitable keywords or phrases for a query. This results in searches that fail to cover all likely aspects of the topic of interest. We describe a scheme that attempts to remedy this situation by automatically expanding the user query through the analysis of initially retrieved documents. Experimental results to demonstrate the effectiveness of the query expansion scheure are presented.
  18. Sanfilippo, M.; Yang, S.; Fichman, P.: Trolling here, there, and everywhere : perceptions of trolling behaviors in context (2017) 0.01
    0.007842129 = product of:
      0.031368516 = sum of:
        0.031368516 = product of:
          0.06273703 = sum of:
            0.06273703 = weight(_text_:aspects in 3823) [ClassicSimilarity], result of:
              0.06273703 = score(doc=3823,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.29962775 = fieldWeight in 3823, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3823)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Online trolling has become increasingly prevalent and visible in online communities. Perceptions of and reactions to trolling behaviors varies significantly from one community to another, as trolling behaviors are contextual and vary across platforms and communities. Through an examination of seven trolling scenarios, this article intends to answer the following questions: how do trolling behaviors differ across contexts; how do perceptions of trolling differ from case to case; and what aspects of context of trolling are perceived to be important by the public? Based on focus groups and interview data, we discuss the ways in which community norms and demographics, technological features of platforms, and community boundaries are perceived to impact trolling behaviors. Two major contributions of the study include a codebook to support future analysis of trolling and formal concept analysis surrounding contextual perceptions of trolling.
  19. Sacco, G.M.: Dynamic taxonomies and guided searches (2006) 0.01
    0.007766659 = product of:
      0.031066636 = sum of:
        0.031066636 = product of:
          0.06213327 = sum of:
            0.06213327 = weight(_text_:22 in 5295) [ClassicSimilarity], result of:
              0.06213327 = score(doc=5295,freq=4.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.38301262 = fieldWeight in 5295, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5295)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 7.2006 17:56:22
  20. Kelly, D.: Measuring online information seeking context : Part 1: background and method (2006) 0.01
    0.0065351077 = product of:
      0.026140431 = sum of:
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 206) [ClassicSimilarity], result of:
              0.052280862 = score(doc=206,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 206, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=206)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Context is one of the most important concepts in information seeking and retrieval research. However, the challenges of studying context are great; thus, it is more common for researchers to use context as a post hoc explanatory factor, rather than as a concept that drives inquiry. The purposes of this study were to develop a method for collecting data about information seeking context in natural online environments, and identify which aspects of context should be considered when studying online information seeking. The study is reported in two parts. In this, the first part, the background and method are presented. Results and implications of this research are presented in Part 2 (Kelly, in press). Part 1 discusses previous literature on information seeking context and behavior and situates the current work within this literature. This part further describes the naturalistic, longitudinal research design that was used to examine and measure the online information seeking contexts of users during a 14-week period. In this design, information seeking context was characterized by a user's self-identified tasks and topics, and several attributes of these, such as the length of time the user expected to work on a task and the user's familiarity with a topic. At weekly intervals, users evaluated the usefulness of the documents that they viewed, and classified these documents according to their tasks and topics. At the end of the study, users provided feedback about the study method.

Years

Languages

  • e 39
  • d 5
  • f 1
  • More… Less…

Types

  • a 40
  • el 5
  • m 1
  • r 1
  • x 1
  • More… Less…