Search (27 results, page 1 of 2)

  • × year_i:[2000 TO 2010}
  • × theme_ss:"Literaturübersicht"
  1. Fallis, D.: Social epistemology and information science (2006) 0.09
    0.09021294 = product of:
      0.18042588 = sum of:
        0.13021462 = weight(_text_:social in 4368) [ClassicSimilarity], result of:
          0.13021462 = score(doc=4368,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.704911 = fieldWeight in 4368, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.125 = fieldNorm(doc=4368)
        0.050211266 = product of:
          0.10042253 = sum of:
            0.10042253 = weight(_text_:22 in 4368) [ClassicSimilarity], result of:
              0.10042253 = score(doc=4368,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.61904186 = fieldWeight in 4368, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=4368)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    13. 7.2008 19:22:28
  2. Harman, D.; Voorhees, E.: Social TREC : an overview (2006) 0.03
    0.032553654 = product of:
      0.13021462 = sum of:
        0.13021462 = weight(_text_:social in 4458) [ClassicSimilarity], result of:
          0.13021462 = score(doc=4458,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.704911 = fieldWeight in 4458, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.125 = fieldNorm(doc=4458)
      0.25 = coord(1/4)
    
  3. Hunter, J.: Collaborative semantic tagging and annotation systems (2009) 0.03
    0.032553654 = product of:
      0.13021462 = sum of:
        0.13021462 = weight(_text_:social in 7382) [ClassicSimilarity], result of:
          0.13021462 = score(doc=7382,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.704911 = fieldWeight in 7382, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.125 = fieldNorm(doc=7382)
      0.25 = coord(1/4)
    
    Theme
    Social tagging
  4. Sawyer, S.; Eschenfelder, K.R.: Social informatics : perspectives, examples, and trends (2002) 0.03
    0.032553654 = product of:
      0.13021462 = sum of:
        0.13021462 = weight(_text_:social in 4292) [ClassicSimilarity], result of:
          0.13021462 = score(doc=4292,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.704911 = fieldWeight in 4292, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.125 = fieldNorm(doc=4292)
      0.25 = coord(1/4)
    
  5. Fox, E.A.; Urs, S.R.: Digital libraries (2002) 0.03
    0.026733 = product of:
      0.053466 = sum of:
        0.032553654 = weight(_text_:social in 4299) [ClassicSimilarity], result of:
          0.032553654 = score(doc=4299,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.17622775 = fieldWeight in 4299, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.03125 = fieldNorm(doc=4299)
        0.020912344 = product of:
          0.041824687 = sum of:
            0.041824687 = weight(_text_:aspects in 4299) [ClassicSimilarity], result of:
              0.041824687 = score(doc=4299,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.19975184 = fieldWeight in 4299, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4299)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The emergence of digital libraries (DLs), at the interface of library and information science with computer and communication technologies, helped to expand significantly the literature in all of these areas during the late 1990s. The pace of development is reflected by the number of special issues of major journals in information science and computer science, and the increasing number of workshops and conferences an digital libraries. For example, starting in 1995, the Communications of the ACM has devoted three special issues to the topic (Fox, Akscyn, Furuta, & Leggett, 1995; Fox & Marchionini, 1998, 2001). The Journal of the American Society for Information Science devoted two issues to digital libraries (H. Chen, 2000; Fox & Lunin, 1993); Information Processing & Management and the Journal of Visual Communication and Image Representation each had one special issue (Chen & Fox, 1996; Marchionini & Fox, 1999). The domain of digital libraries, though still evolving, has matured over the last decade, as demonstrated by coverage through D-Lib (http://www.dlib.org), the International Journal an Digital Libraries (http://link.springer.de/link/service/journals/00799), and two overview works (W Y Arms, 2000; Lesk, 1997; both of which have also served as textbooks). Sun Microsystems published a small book to guide those planning a digital library (Noerr, 2000), and IBM has been developing commercial products for digital libraries since 1994 (IBM, 2000). A number of Web sites have extensive sets of pointers to information an DLs (D-Lib Forum, 2001; Fox, 1998a; Habing, 1998; Hein, 2000; Schwartz, 2001a, 2001b). Further, the field has attracted the attention of diverse academics, research groups, and practitionersmany of whom have attended tutorials, workshops, or conferences, e.g., the Joint Conference an Digital Libraries, which is a sequel to a separate series run by ACM and IEEE-CS. Therefore, it is timely that ARIST publishes this first review focusing specifically an digital libraries. There has been no ARIST chapter to date directly dealing with the area of DLs, though some related domains have been covered-particularly: information retrieval, user interfaces (Marchionini & Komlodi, 1998), social informatics of DLs (Bishop & Star, 1996), and scholarly communication (see Borgman and Furner's chapter in this volume). This chapter provides an overview of the diverse aspects and dimensions of DL research, practice, and literature, identifying trends and delineating research directions.
  6. Capurro, R.; Hjoerland, B.: ¬The concept of information (2002) 0.03
    0.02510631 = product of:
      0.05021262 = sum of:
        0.034528363 = weight(_text_:social in 5079) [ClassicSimilarity], result of:
          0.034528363 = score(doc=5079,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.18691775 = fieldWeight in 5079, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0234375 = fieldNorm(doc=5079)
        0.015684258 = product of:
          0.031368516 = sum of:
            0.031368516 = weight(_text_:aspects in 5079) [ClassicSimilarity], result of:
              0.031368516 = score(doc=5079,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.14981388 = fieldWeight in 5079, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=5079)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The concept of information as we use it in everyday English, in the sense of knowledge communicated, plays a central role in contemporary society. The development and widespread use of computer networks since the end of World War II, and the emergence of information science as a discipline in the 1950s, are evidence of this focus. Although knowledge and its communication are basic phenomena of every human society, it is the rise of information technology and its global impacts that characterize ours as an information society. It is commonplace to consider information as a basic condition for economic development together with capital, labor, and raw material; but what makes information especially significant at present is its digital nature. The impact of information technology an the natural and social sciences in particular has made this everyday notion a highly controversial concept. Claude Shannon's (1948) "A Mathematical Theory of Communication" is a landmark work, referring to the common use of information with its semantic and pragmatic dimensions, while at the same time redefining the concept within an engineering framework. The fact that the concept of knowledge communication has been designated by the word information seems, prima facie, a linguistic happenstance. For a science like information science (IS), it is of course important how fundamental terms are defined; and in IS, as in other fields, the question of how to define information is often raised. This chapter is an attempt to review the status of the concept of information in IS, with reference also to interdisciplinary trends. In scientific discourse, theoretical concepts are not true or false elements or glimpses of some element of reality; rather, they are constructions designed to do a job in the best possible way. Different conceptions of fundamental terms like information are thus more or less fruitful, depending an the theories (and in the end, the practical actions) they are expected to support. In the opening section, we discuss the problem of defining terms from the perspective of the philosophy of science. The history of a word provides us with anecdotes that are tangential to the concept itself. But in our case, the use of the word information points to a specific perspective from which the concept of knowledge communication has been defined. This perspective includes such characteristics as novelty and relevante; i.e., it refers to the process of knowledge transformation, and particularly to selection and interpretation within a specific context. The discussion leads to the questions of why and when this meaning was designated with the word information. We will explore this history, and we believe that our results may help readers better understand the complexity of the concept with regard to its scientific definitions.
    Discussions about the concept of information in other disciplines are very important for IS because many theories and approaches in IS have their origins elsewhere (see the section "Information as an Interdisciplinary Concept" in this chapter). The epistemological concept of information brings into play nonhuman information processes, particularly in physics and biology. And vice versa: the psychic and sociological processes of selection and interpretation may be considered using objective parameters, leaving aside the semantic dimension, or more precisely, by considering objective or situational parameters of interpretation. This concept can be illustrated also in physical terms with regard to release mechanisms, as we suggest. Our overview of the concept of information in the natural sciences as well as in the humanities and social sciences cannot hope to be comprehensive. In most cases, we can refer only to fragments of theories. However, the reader may wish to follow the leads provided in the bibliography. Readers interested primarily in information science may derive most benefit from the section an "Information in Information Science," in which we offer a detailed explanation of diverse views and theories of information within our field; supplementing the recent ARIST chapter by Cornelius (2002). We show that the introduction of the concept of information circa 1950 to the domain of special librarianship and documentation has in itself had serious consequences for the types of knowledge and theories developed in our field. The important question is not only what meaning we give the term in IS, but also how it relates to other basic terms, such as documents, texts, and knowledge. Starting with an objectivist view from the world of information theory and cybernetics, information science has turned to the phenomena of relevance and interpretation as basic aspects of the concept of information. This change is in no way a turn to a subjectivist theory, but an appraisal of different perspectives that may determine in a particular context what is being considered as informative, be it a "thing" (Buckland, 1991b) or a document. Different concepts of information within information science reflect tensions between a subjective and an objective approach. The concept of interpretation or selection may be considered to be the bridge between these two poles. It is important, however, to consider the different professions involved with the interpretation and selection of knowledge. The most important thing in IS (as in information policy) is to consider information as a constitutive forte in society and, thus, recognize the teleological nature of information systems and services (Braman, 1989).
  7. Davenport, E.; Hall, H.: Organizational Knowledge and Communities of Practice (2002) 0.02
    0.017264182 = product of:
      0.06905673 = sum of:
        0.06905673 = weight(_text_:social in 4293) [ClassicSimilarity], result of:
          0.06905673 = score(doc=4293,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.3738355 = fieldWeight in 4293, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=4293)
      0.25 = coord(1/4)
    
    Abstract
    A community of practice has recently been defined as "a flexible group of professionals, informally bound by common interests, who interact through interdependent tasks guided by a common purpose thereby embodying a store of common knowledge" (Jubert, 1999, p. 166). The association of communities of practice with the production of collective knowledge has long been recognized, and they have been objects of study for a number of decades in the context of professional communication, particularly communication in science (Abbott, 1988; Bazerman & Paradis, 1991). Recently, however, they have been invoked in the domain of organization studies as sites where people learn and share insights. If, as Stinchcombe suggests, an organization is "a set of stable social relations, dehberately created, with the explicit intention of continuously accomplishing some specific goals or purposes" (Stinchcombe, 1965, p. 142), where does this "flexible" and "embodied" source of knowledge fit? Can communities of practice be harnessed, engineered, and managed like other organizational groups, or does their strength lie in the fact that they operate outside the stable and persistent social relations that characterize the organization?
  8. Enser, P.G.B.: Visual image retrieval (2008) 0.01
    0.012552816 = product of:
      0.050211266 = sum of:
        0.050211266 = product of:
          0.10042253 = sum of:
            0.10042253 = weight(_text_:22 in 3281) [ClassicSimilarity], result of:
              0.10042253 = score(doc=3281,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.61904186 = fieldWeight in 3281, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=3281)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2012 13:01:26
  9. Morris, S.A.: Mapping research specialties (2008) 0.01
    0.012552816 = product of:
      0.050211266 = sum of:
        0.050211266 = product of:
          0.10042253 = sum of:
            0.10042253 = weight(_text_:22 in 3962) [ClassicSimilarity], result of:
              0.10042253 = score(doc=3962,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.61904186 = fieldWeight in 3962, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=3962)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    13. 7.2008 9:30:22
  10. Nicolaisen, J.: Citation analysis (2007) 0.01
    0.012552816 = product of:
      0.050211266 = sum of:
        0.050211266 = product of:
          0.10042253 = sum of:
            0.10042253 = weight(_text_:22 in 6091) [ClassicSimilarity], result of:
              0.10042253 = score(doc=6091,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.61904186 = fieldWeight in 6091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=6091)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    13. 7.2008 19:53:22
  11. Lievrouw, A.A.; Farb, S.E.: Information and equity (2002) 0.01
    0.01220762 = product of:
      0.04883048 = sum of:
        0.04883048 = weight(_text_:social in 4243) [ClassicSimilarity], result of:
          0.04883048 = score(doc=4243,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.26434162 = fieldWeight in 4243, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=4243)
      0.25 = coord(1/4)
    
    Abstract
    Inequities in information creation, production, distribution, and use are nothing new. Throughout human history some people have been more educated, better connected, more widely traveled, or more wellinformed than others. Until recently, relatively few have enjoyed the benefits of literacy, and even fewer could afford to own books. In the age of mass media, societies and social groups have varied dramatically in terms of their access to and uses of print, radio, television, film, telephone, and telegraph. What is new, however, is the growing attention being given to informational inequities in an increasingly information-driven global economy. Across disciplinary, national, and cultural boundaries, the widespread agreement is that the use of newer information and communication technologies (ICTs), particularly the Internet, has accelerated the production, circulation, and consumption of information in every form. But also a growing sense has arisen that ICTs have helped to exacerbate existing differences in information access and use, and may even have fostered new types of barriers. As Hess and Ostrom (2001, p. 45) point out, "Distributed digital technologies have the dual capacity to increase as well as restrict access to information."
  12. Borgman, C.L.; Furner, J.: Scholarly communication and bibliometrics (2002) 0.01
    0.01220762 = product of:
      0.04883048 = sum of:
        0.04883048 = weight(_text_:social in 4291) [ClassicSimilarity], result of:
          0.04883048 = score(doc=4291,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.26434162 = fieldWeight in 4291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=4291)
      0.25 = coord(1/4)
    
    Abstract
    Why devote an ARIST chapter to scholarly communication and bibliometrics, and why now? Bibliometrics already is a frequently covered ARIST topic, with chapters such as that by White and McCain (1989) on bibliometrics generally, White and McCain (1997) on visualization of literatures, Wilson and Hood (2001) on informetric laws, and Tabah (2001) on literature dynamics. Similarly, scholarly communication has been addressed in other ARIST chapters such as Bishop and Star (1996) on social informatics and digital libraries, Schamber (1994) on relevance and information behavior, and many earlier chapters on information needs and uses. More than a decade ago, the first author addressed the intersection of scholarly communication and bibliometrics with a journal special issue and an edited book (Borgman, 1990; Borgman & Paisley, 1989), and she recently examined interim developments (Borgman, 2000a, 2000c). This review covers the decade (1990-2000) since the comprehensive 1990 volume, citing earlier works only when necessary to explain the foundation for recent developments.
  13. Solomon, S.: Discovering information in context (2002) 0.01
    0.01220762 = product of:
      0.04883048 = sum of:
        0.04883048 = weight(_text_:social in 4294) [ClassicSimilarity], result of:
          0.04883048 = score(doc=4294,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.26434162 = fieldWeight in 4294, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=4294)
      0.25 = coord(1/4)
    
    Abstract
    This chapter has three purposes: to illuminate the ways in which people discover, shape, or create information as part of their lives and work; to consider how the resources and rules of people's situations facilitate or limit discovery of information; and to introduce the idea of a sociotechnical systems design science that is founded in part an understanding the discovery of information in context. In addressing these purposes the chapter focuses an both theoretical and research works in information studies and related fields that shed light on information as something that is embedded in the fabric of people's lives and work. Thus, the discovery of information view presented here characterizes information as being constructed through involvement in life's activities, problems, tasks, and social and technological structures, as opposed to being independent and context free. Given this process view, discovering information entails engagement, reflection, learning, and action-all the behaviors that research subjects often speak of as making sense-above and beyond the traditional focus of the information studies field: seeking without consideration of connections across time.
  14. Haythornthwaite, C.; Hagar, C.: ¬The social worlds of the Web (2004) 0.01
    0.010173016 = product of:
      0.040692065 = sum of:
        0.040692065 = weight(_text_:social in 4282) [ClassicSimilarity], result of:
          0.040692065 = score(doc=4282,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 4282, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4282)
      0.25 = coord(1/4)
    
  15. Cornelius, I.: Theorizing information for information science (2002) 0.01
    0.010070773 = product of:
      0.04028309 = sum of:
        0.04028309 = weight(_text_:social in 4244) [ClassicSimilarity], result of:
          0.04028309 = score(doc=4244,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.21807072 = fieldWeight in 4244, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4244)
      0.25 = coord(1/4)
    
    Abstract
    Does information science have a theory of information? There seems to be a tendency within information science to seek a theory of information, but the search is apparently unproductive (Hjoerland, 1998; Saracevic, 1999). This review brings together work from inside and outside the field of information science, showing that other perspectives an information theory could be of assistance. Constructivist claims that emphasize the uniqueness of the individual experience of information, maintaining that there is no information independent of our social practices (Cornelius, 1996a), are also mentioned. Such a position would be echoed in a symbolic interactionist approach. Conventionally, the history of attempts to develop a theory of information date from the publication of Claude Shannon's work in 1948, and his joint publication of that work with an essay by Warren Weaver in 1949 (Shannon & Weaver, 1949/1963). Information science found itself alongside many other disciplines attempting to develop a theory of information (Machlup & Mansfield, 1983). From Weaver's essay stems the claim that the basic concepts of Shannon's mathematical theory of communication, which Shannon later referred to as a theory of information, can be applied in disciplines outside electrical engineering, even in the social sciences.
  16. Vakkari, P.: Task-based information searching (2002) 0.01
    0.007842129 = product of:
      0.031368516 = sum of:
        0.031368516 = product of:
          0.06273703 = sum of:
            0.06273703 = weight(_text_:aspects in 4288) [ClassicSimilarity], result of:
              0.06273703 = score(doc=4288,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.29962775 = fieldWeight in 4288, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4288)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The rationale for using information systems is to find information that helps us in our daily activities, be they tasks or interests. Systems are expected to support us in searching for and identifying useful information. Although the activities and tasks performed by humans generate information needs and searching, they have attracted little attention in studies of information searching. Such studies have concentrated an search tasks rather than the activities that trigger them. It is obvious that our understanding of information searching is only partial, if we are not able to connect aspects of searching to the related task. The expected contribution of information to the task is reflected in relevance assessments of the information items found, and in the search tactics and use of the system in general. Taking the task into account seems to be a necessary condition for understanding and explaining information searching, and, by extension, for effective systems design.
  17. Thelwall, M.; Vaughan, L.; Björneborn, L.: Webometrics (2004) 0.01
    0.0065351077 = product of:
      0.026140431 = sum of:
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 4279) [ClassicSimilarity], result of:
              0.052280862 = score(doc=4279,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 4279, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4279)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Webometrics, the quantitative study of Web-related phenomena, emerged from the realization that methods originally designed for bibliometric analysis of scientific journal article citation patterns could be applied to the Web, with commercial search engines providing the raw data. Almind and Ingwersen (1997) defined the field and gave it its name. Other pioneers included Rodriguez Gairin (1997) and Aguillo (1998). Larson (1996) undertook exploratory link structure analysis, as did Rousseau (1997). Webometrics encompasses research from fields beyond information science such as communication studies, statistical physics, and computer science. In this review we concentrate on link analysis, but also cover other aspects of webometrics, including Web log fle analysis. One theme that runs through this chapter is the messiness of Web data and the need for data cleansing heuristics. The uncontrolled Web creates numerous problems in the interpretation of results, for instance, from the automatic creation or replication of links. The loose connection between top-level domain specifications (e.g., com, edu, and org) and their actual content is also a frustrating problem. For example, many .com sites contain noncommercial content, although com is ostensibly the main commercial top-level domain. Indeed, a skeptical researcher could claim that obstacles of this kind are so great that all Web analyses lack value. As will be seen, one response to this view, a view shared by critics of evaluative bibliometrics, is to demonstrate that Web data correlate significantly with some non-Web data in order to prove that the Web data are not wholly random. A practical response has been to develop increasingly sophisticated data cleansing techniques and multiple data analysis methods.
  18. Kim, K.-S.: Recent work in cataloging and classification, 2000-2002 (2003) 0.01
    0.006276408 = product of:
      0.025105633 = sum of:
        0.025105633 = product of:
          0.050211266 = sum of:
            0.050211266 = weight(_text_:22 in 152) [ClassicSimilarity], result of:
              0.050211266 = score(doc=152,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.30952093 = fieldWeight in 152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=152)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    10. 9.2000 17:38:22
  19. El-Sherbini, M.A.: Cataloging and classification : review of the literature 2005-06 (2008) 0.01
    0.006276408 = product of:
      0.025105633 = sum of:
        0.025105633 = product of:
          0.050211266 = sum of:
            0.050211266 = weight(_text_:22 in 249) [ClassicSimilarity], result of:
              0.050211266 = score(doc=249,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.30952093 = fieldWeight in 249, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=249)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    10. 9.2000 17:38:22
  20. Miksa, S.D.: ¬The challenges of change : a review of cataloging and classification literature, 2003-2004 (2007) 0.01
    0.006276408 = product of:
      0.025105633 = sum of:
        0.025105633 = product of:
          0.050211266 = sum of:
            0.050211266 = weight(_text_:22 in 266) [ClassicSimilarity], result of:
              0.050211266 = score(doc=266,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.30952093 = fieldWeight in 266, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=266)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    10. 9.2000 17:38:22