Search (4 results, page 1 of 1)

  • × year_i:[2010 TO 2020}
  • × author_ss:"Li, X."
  1. Li, X.; Thelwall, M.; Kousha, K.: ¬The role of arXiv, RePEc, SSRN and PMC in formal scholarly communication (2015) 0.04
    0.03661915 = product of:
      0.0732383 = sum of:
        0.057547275 = weight(_text_:social in 2593) [ClassicSimilarity], result of:
          0.057547275 = score(doc=2593,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.3115296 = fieldWeight in 2593, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2593)
        0.015691021 = product of:
          0.031382043 = sum of:
            0.031382043 = weight(_text_:22 in 2593) [ClassicSimilarity], result of:
              0.031382043 = score(doc=2593,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.19345059 = fieldWeight in 2593, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2593)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Purpose The four major Subject Repositories (SRs), arXiv, Research Papers in Economics (RePEc), Social Science Research Network (SSRN) and PubMed Central (PMC), are all important within their disciplines but no previous study has systematically compared how often they are cited in academic publications. In response, the purpose of this paper is to report an analysis of citations to SRs from Scopus publications, 2000-2013. Design/methodology/approach Scopus searches were used to count the number of documents citing the four SRs in each year. A random sample of 384 documents citing the four SRs was then visited to investigate the nature of the citations. Findings Each SR was most cited within its own subject area but attracted substantial citations from other subject areas, suggesting that they are open to interdisciplinary uses. The proportion of documents citing each SR is continuing to increase rapidly, and the SRs all seem to attract substantial numbers of citations from more than one discipline. Research limitations/implications Scopus does not cover all publications, and most citations to documents found in the four SRs presumably cite the published version, when one exists, rather than the repository version. Practical implications SRs are continuing to grow and do not seem to be threatened by institutional repositories and so research managers should encourage their continued use within their core disciplines, including for research that aims at an audience in other disciplines. Originality/value This is the first simultaneous analysis of Scopus citations to the four most popular SRs.
    Date
    20. 1.2015 18:30:22
    Object
    Social Science Research Network
  2. Su, S.; Li, X.; Cheng, X.; Sun, C.: Location-aware targeted influence maximization in social networks (2018) 0.01
    0.014386819 = product of:
      0.057547275 = sum of:
        0.057547275 = weight(_text_:social in 4034) [ClassicSimilarity], result of:
          0.057547275 = score(doc=4034,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.3115296 = fieldWeight in 4034, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4034)
      0.25 = coord(1/4)
    
    Abstract
    In this paper, we study the location-aware targeted influence maximization problem in social networks, which finds a seed set to maximize the influence spread over the targeted users. In particular, we consider those users who have both topic and geographical preferences on promotion products as targeted users. To efficiently solve this problem, one challenge is how to find the targeted users and compute their preferences efficiently for given requests. To address this challenge, we devise a TR-tree index structure, where each tree node stores users' topic and geographical preferences. By traversing the TR-tree in depth-first order, we can efficiently find the targeted users. Another challenge of the problem is to devise algorithms for efficient seeds selection. We solve this challenge from two complementary directions. In one direction, we adopt the maximum influence arborescence (MIA) model to approximate the influence spread, and propose two efficient approximation algorithms with math formula approximation ratio, which prune some candidate seeds with small influences by precomputing users' initial influences offline and estimating the upper bound of their marginal influences online. In the other direction, we propose a fast heuristic algorithm to improve efficiency. Experiments conducted on real-world data sets demonstrate the effectiveness and efficiency of our proposed algorithms.
  3. Xie, H.; Li, X.; Wang, T.; Lau, R.Y.K.; Wong, T.-L.; Chen, L.; Wang, F.L.; Li, Q.: Incorporating sentiment into tag-based user profiles and resource profiles for personalized search in folksonomy (2016) 0.01
    0.008138414 = product of:
      0.032553654 = sum of:
        0.032553654 = weight(_text_:social in 2671) [ClassicSimilarity], result of:
          0.032553654 = score(doc=2671,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.17622775 = fieldWeight in 2671, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.03125 = fieldNorm(doc=2671)
      0.25 = coord(1/4)
    
    Footnote
    Beitrag in einem Themenheft "Emotion and sentiment in social and expressive media"
  4. Li, X.; Rijke, M.de: Characterizing and predicting downloads in academic search (2019) 0.01
    0.0065351077 = product of:
      0.026140431 = sum of:
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 5103) [ClassicSimilarity], result of:
              0.052280862 = score(doc=5103,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 5103, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5103)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Numerous studies have been conducted on the information interaction behavior of search engine users. Few studies have considered information interactions in the domain of academic search. We focus on conversion behavior in this domain. Conversions have been widely studied in the e-commerce domain, e.g., for online shopping and hotel booking, but little is known about conversions in academic search. We start with a description of a unique dataset of a particular type of conversion in academic search, viz. users' downloads of scientific papers. Then we move to an observational analysis of users' download actions. We first characterize user actions and show their statistics in sessions. Then we focus on behavioral and topical aspects of downloads, revealing behavioral correlations across download sessions. We discover unique properties that differ from other conversion settings such as online shopping. Using insights gained from these observations, we consider the task of predicting the next download. In particular, we focus on predicting the time until the next download session, and on predicting the number of downloads. We cast these as time series prediction problems and model them using LSTMs. We develop a specialized model built on user segmentations that achieves significant improvements over the state-of-the art.