Search (3 results, page 1 of 1)

  • × year_i:[2010 TO 2020}
  • × author_ss:"Zhang, L."
  1. Liu, X.; Guo, C.; Zhang, L.: Scholar metadata and knowledge generation with human and artificial intelligence (2014) 0.01
    0.01220762 = product of:
      0.04883048 = sum of:
        0.04883048 = weight(_text_:social in 1287) [ClassicSimilarity], result of:
          0.04883048 = score(doc=1287,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.26434162 = fieldWeight in 1287, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=1287)
      0.25 = coord(1/4)
    
    Abstract
    Scholar metadata have traditionally centered on descriptive representations, which have been used as a foundation for scholarly publication repositories and academic information retrieval systems. In this article, we propose innovative and economic methods of generating knowledge-based structural metadata (structural keywords) using a combination of natural language processing-based machine-learning techniques and human intelligence. By allowing low-barrier participation through a social media system, scholars (both as authors and users) can participate in the metadata editing and enhancing process and benefit from more accurate and effective information retrieval. Our experimental web system ScholarWiki uses machine learning techniques, which automatically produce increasingly refined metadata by learning from the structural metadata contributed by scholars. The cumulated structural metadata add intelligence and automatically enhance and update recursively the quality of metadata, wiki pages, and the machine-learning model.
  2. Zhang, L.; Rousseau, R.; Glänzel, W.: Diversity of references as an indicator of the interdisciplinarity of journals : taking similarity between subject fields into account (2016) 0.01
    0.010173016 = product of:
      0.040692065 = sum of:
        0.040692065 = weight(_text_:social in 2902) [ClassicSimilarity], result of:
          0.040692065 = score(doc=2902,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 2902, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2902)
      0.25 = coord(1/4)
    
    Abstract
    The objective of this article is to further the study of journal interdisciplinarity, or, more generally, knowledge integration at the level of individual articles. Interdisciplinarity is operationalized by the diversity of subject fields assigned to cited items in the article's reference list. Subject fields and subfields were obtained from the Leuven-Budapest (ECOOM) subject-classification scheme, while disciplinary diversity was measured taking variety, balance, and disparity into account. As diversity measure we use a Hill-type true diversity in the sense of Jost and Leinster-Cobbold. The analysis is conducted in 3 steps. In the first part, the properties of this measure are discussed, and, on the basis of these properties it is shown that the measure has the potential to serve as an indicator of interdisciplinarity. In the second part the applicability of this indicator is shown using selected journals from several research fields ranging from mathematics to social sciences. Finally, the often-heard argument, namely, that interdisciplinary research exhibits larger visibility and impact, is studied on the basis of these selected journals. Yet, as only 7 journals, representing a total of 15,757 articles, are studied, albeit chosen to cover a large range of interdisciplinarity, further research is still needed.
  3. Zhang, L.: Grasping the structure of journal articles : utilizing the functions of information units (2012) 0.00
    0.004707306 = product of:
      0.018829225 = sum of:
        0.018829225 = product of:
          0.03765845 = sum of:
            0.03765845 = weight(_text_:22 in 65) [ClassicSimilarity], result of:
              0.03765845 = score(doc=65,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.23214069 = fieldWeight in 65, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=65)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    6. 4.2012 18:43:22