Search (85 results, page 1 of 5)

  • × theme_ss:"Semantic Web"
  1. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.13
    0.12879133 = product of:
      0.30051312 = sum of:
        0.042930447 = product of:
          0.12879133 = sum of:
            0.12879133 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.12879133 = score(doc=701,freq=2.0), product of:
                0.34373808 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.04054466 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.12879133 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.12879133 = score(doc=701,freq=2.0), product of:
            0.34373808 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.04054466 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.12879133 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.12879133 = score(doc=701,freq=2.0), product of:
            0.34373808 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.04054466 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.42857143 = coord(3/7)
    
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  2. Semantic applications (2018) 0.04
    0.039334435 = product of:
      0.13767052 = sum of:
        0.07533984 = weight(_text_:industry in 5204) [ClassicSimilarity], result of:
          0.07533984 = score(doc=5204,freq=2.0), product of:
            0.2351482 = queryWeight, product of:
              5.799733 = idf(docFreq=363, maxDocs=44218)
              0.04054466 = queryNorm
            0.320393 = fieldWeight in 5204, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.799733 = idf(docFreq=363, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5204)
        0.062330686 = weight(_text_:management in 5204) [ClassicSimilarity], result of:
          0.062330686 = score(doc=5204,freq=12.0), product of:
            0.13666032 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.04054466 = queryNorm
            0.45609936 = fieldWeight in 5204, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5204)
      0.2857143 = coord(2/7)
    
    Content
    Introduction.- Ontology Development.- Compliance using Metadata.- Variety Management for Big Data.- Text Mining in Economics.- Generation of Natural Language Texts.- Sentiment Analysis.- Building Concise Text Corpora from Web Contents.- Ontology-Based Modelling of Web Content.- Personalized Clinical Decision Support for Cancer Care.- Applications of Temporal Conceptual Semantic Systems.- Context-Aware Documentation in the Smart Factory.- Knowledge-Based Production Planning for Industry 4.0.- Information Exchange in Jurisdiction.- Supporting Automated License Clearing.- Managing cultural assets: Implementing typical cultural heritage archive's usage scenarios via Semantic Web technologies.- Semantic Applications for Process Management.- Domain-Specific Semantic Search Applications.
    LCSH
    Management information systems
    Management of Computing and Information Systems
    Subject
    Management information systems
    Management of Computing and Information Systems
  3. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.04
    0.03562918 = product of:
      0.12470212 = sum of:
        0.105475776 = weight(_text_:industry in 759) [ClassicSimilarity], result of:
          0.105475776 = score(doc=759,freq=2.0), product of:
            0.2351482 = queryWeight, product of:
              5.799733 = idf(docFreq=363, maxDocs=44218)
              0.04054466 = queryNorm
            0.4485502 = fieldWeight in 759, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.799733 = idf(docFreq=363, maxDocs=44218)
              0.0546875 = fieldNorm(doc=759)
        0.019226344 = product of:
          0.03845269 = sum of:
            0.03845269 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.03845269 = score(doc=759,freq=2.0), product of:
                0.14198048 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04054466 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    XML will have a profound impact on the way data is exchanged on the Internet. An important feature of this language is the separation of content from presentation, which makes it easier to select and/or reformat the data. However, due to the likelihood of numerous industry and domain specific DTDs, those who wish to integrate information will still be faced with the problem of semantic interoperability. In this paper we discuss why this problem is not solved by XML, and then discuss why the Resource Description Framework is only a partial solution. We then present the SHOE language, which we feel has many of the features necessary to enable a semantic web, and describe an existing set of tools that make it easy to use the language.
    Date
    11. 5.2013 19:22:18
  4. Antoniou, G.; Harmelen, F. van: ¬A semantic Web primer (2004) 0.03
    0.027835347 = product of:
      0.06494914 = sum of:
        0.012723198 = weight(_text_:management in 468) [ClassicSimilarity], result of:
          0.012723198 = score(doc=468,freq=2.0), product of:
            0.13666032 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.04054466 = queryNorm
            0.09310089 = fieldWeight in 468, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.01953125 = fieldNorm(doc=468)
        0.035246976 = weight(_text_:united in 468) [ClassicSimilarity], result of:
          0.035246976 = score(doc=468,freq=2.0), product of:
            0.2274601 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.04054466 = queryNorm
            0.15495893 = fieldWeight in 468, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.01953125 = fieldNorm(doc=468)
        0.016978968 = product of:
          0.033957936 = sum of:
            0.033957936 = weight(_text_:states in 468) [ClassicSimilarity], result of:
              0.033957936 = score(doc=468,freq=2.0), product of:
                0.22326207 = queryWeight, product of:
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.04054466 = queryNorm
                0.152099 = fieldWeight in 468, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=468)
          0.5 = coord(1/2)
      0.42857143 = coord(3/7)
    
    Footnote
    Rez. in: JASIST 57(2006) no.8, S.1132-1133 (H. Che): "The World Wide Web has been the main source of an important shift in the way people communicate with each other, get information, and conduct business. However, most of the current Web content is only suitable for human consumption. The main obstacle to providing better quality of service is that the meaning of Web content is not machine-accessible. The "Semantic Web" is envisioned by Tim Berners-Lee as a logical extension to the current Web that enables explicit representations of term meaning. It aims to bring the Web to its full potential via the exploration of these machine-processable metadata. To fulfill this, it pros ides some meta languages like RDF, OWL, DAML+OIL, and SHOE for expressing knowledge that has clear, unambiguous meanings. The first steps in searing the Semantic Web into the current Web are successfully underway. In the forthcoming years, these efforts still remain highly focused in the research and development community. In the next phase, the Semantic Web will respond more intelligently to user queries. The first chapter gets started with an excellent introduction to the Semantic Web vision. At first, today's Web is introduced, and problems with some current applications like search engines are also covered. Subsequently, knowledge management. business-to-consumer electronic commerce, business-to-business electronic commerce, and personal agents are used as examples to show the potential requirements for the Semantic Web. Next comes the brief description of the underpinning technologies, including metadata, ontology, logic, and agent. The differences between the Semantic Web and Artificial Intelligence are also discussed in a later subsection. In section 1.4, the famous "laser-cake" diagram is given to show a layered view of the Semantic Web. From chapter 2, the book starts addressing some of the most important technologies for constructing the Semantic Web. In chapter 2, the authors discuss XML and its related technologies such as namespaces, XPath, and XSLT. XML is a simple, very flexible text format which is often used for the exchange of a wide variety of data on the Web and elsewhere. The W3C has defined various languages on top of XML, such as RDF. Although this chapter is very well planned and written, many details are not included because of the extensiveness of the XML technologies. Many other books on XML provide more comprehensive coverage.
    The next chapter introduces resource description framework (RDF) and RDF schema (RDFS). Unlike XML, RDF provides a foundation for expressing the semantics of dada: it is a standard dada model for machine-processable semantics. Resource description framework schema offers a number of modeling primitives for organizing RDF vocabularies in typed hierarchies. In addition to RDF and RDFS, a query language for RDF, i.e. RQL. is introduced. This chapter and the next chapter are two of the most important chapters in the book. Chapter 4 presents another language called Web Ontology Language (OWL). Because RDFS is quite primitive as a modeling language for the Web, more powerful languages are needed. A richer language. DAML+OIL, is thus proposed as a joint endeavor of the United States and Europe. OWL takes DAML+OIL as the starting point, and aims to be the standardized and broadly accepted ontology language. At the beginning of the chapter, the nontrivial relation with RDF/RDFS is discussed. Then the authors describe the various language elements of OWL in some detail. Moreover, Appendix A contains an abstract OWL syntax. which compresses OWL and makes OWL much easier to read. Chapter 5 covers both monotonic and nonmonotonic rules. Whereas the previous chapter's mainly concentrate on specializations of knowledge representation, this chapter depicts the foundation of knowledge representation and inference. Two examples are also givwn to explain monotonic and non-monotonic rules, respectively. "To get the most out of the chapter. readers had better gain a thorough understanding of predicate logic first. Chapter 6 presents several realistic application scenarios to which the Semantic Web technology can be applied. including horizontal information products at Elsevier, data integration at Audi, skill finding at Swiss Life, a think tank portal at EnerSearch, e-learning. Web services, multimedia collection indexing, online procurement, raid device interoperability. These case studies give us some real feelings about the Semantic Web.
  5. Multimedia content and the Semantic Web : methods, standards, and tools (2005) 0.03
    0.026694145 = product of:
      0.062286336 = sum of:
        0.03766992 = weight(_text_:industry in 150) [ClassicSimilarity], result of:
          0.03766992 = score(doc=150,freq=2.0), product of:
            0.2351482 = queryWeight, product of:
              5.799733 = idf(docFreq=363, maxDocs=44218)
              0.04054466 = queryNorm
            0.1601965 = fieldWeight in 150, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.799733 = idf(docFreq=363, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.012723198 = weight(_text_:management in 150) [ClassicSimilarity], result of:
          0.012723198 = score(doc=150,freq=2.0), product of:
            0.13666032 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.04054466 = queryNorm
            0.09310089 = fieldWeight in 150, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.011893217 = product of:
          0.023786435 = sum of:
            0.023786435 = weight(_text_:22 in 150) [ClassicSimilarity], result of:
              0.023786435 = score(doc=150,freq=6.0), product of:
                0.14198048 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04054466 = queryNorm
                0.16753313 = fieldWeight in 150, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=150)
          0.5 = coord(1/2)
      0.42857143 = coord(3/7)
    
    Classification
    006.7 22
    Date
    7. 3.2007 19:30:22
    DDC
    006.7 22
    Footnote
    The final part of the book discusses research in multimedia content management systems and the semantic web, and presents examples and applications for semantic multimedia analysis in search and retrieval systems. These chapters describe example systems in which current projects have been implemented, and include extensive results and real demonstrations. For example, real case scenarios such as ECommerce medical applications and Web services have been introduced. Topics in natural language, speech and image processing techniques and their application for multimedia indexing, and content-based retrieval have been elaborated upon with extensive examples and deployment methods. The editors of the book themselves provide the readers with a chapter about their latest research results on knowledge-based multimedia content indexing and retrieval. Some interesting applications for multimedia content and the semantic web are introduced. Applications that have taken advantage of the metadata provided by MPEG7 in order to realize advance-access services for multimedia content have been provided. The applications discussed in the third part of the book provide useful guidance to researchers and practitioners properly planning to implement semantic multimedia analysis techniques in new research and development projects in both academia and industry. A fourth part should be added to this book: performance measurements for integrated approaches of multimedia analysis and the semantic web. Performance of the semantic approach is a very sophisticated issue and requires extensive elaboration and effort. Measuring the semantic search is an ongoing research area; several chapters concerning performance measurement and analysis would be required to adequately cover this area and introduce it to readers."
  6. Veltman, K.H.: Syntactic and semantic interoperability : new approaches to knowledge and the Semantic Web (2001) 0.02
    0.023874719 = product of:
      0.08356151 = sum of:
        0.056395162 = weight(_text_:united in 3883) [ClassicSimilarity], result of:
          0.056395162 = score(doc=3883,freq=2.0), product of:
            0.2274601 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.04054466 = queryNorm
            0.2479343 = fieldWeight in 3883, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.03125 = fieldNorm(doc=3883)
        0.02716635 = product of:
          0.0543327 = sum of:
            0.0543327 = weight(_text_:states in 3883) [ClassicSimilarity], result of:
              0.0543327 = score(doc=3883,freq=2.0), product of:
                0.22326207 = queryWeight, product of:
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.04054466 = queryNorm
                0.24335839 = fieldWeight in 3883, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3883)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    At VVWW-7 (Brisbane, 1997), Tim Berners-Lee outlined his vision of a global reasoning web. At VVWW- 8 (Toronto, May 1998), he developed this into a vision of a semantic web, where one Gould search not just for isolated words, but for meaning in the form of logically provable claims. In the past four years this vision has spread with amazing speed. The semantic web has been adopted by the European Commission as one of the important goals of the Sixth Framework Programme. In the United States it has become linked with the Defense Advanced Research Projects Agency (DARPA). While this quest to achieve a semantic web is new, the quest for meaning in language has a history that is almost as old as language itself. Accordingly this paper opens with a survey of the historical background. The contributions of the Dublin Core are reviewed briefly. To achieve a semantic web requires both syntactic and semantic interoperability. These challenges are outlined. A basic contention of this paper is that semantic interoperability requires much more than a simple agreement concerning the static meaning of a term. Different levels of agreement (local, regional, national and international) are involved and these levels have their own history. Hence, one of the larger challenges is to create new systems of knowledge organization, which identify and connect these different levels. With respect to meaning or semantics, early twentieth century pioneers such as Wüster were hopeful that it might be sufficient to limit oneself to isolated terms and words without reference to the larger grammatical context: to concept systems rather than to propositional logic. While a fascination with concept systems implicitly dominates many contemporary discussions, this paper suggests why this approach is not sufficient. The final section of this paper explores how an approach using propositional logic could lead to a new approach to universals and particulars. This points to a re-organization of knowledge, and opens the way for a vision of a semantic web with all the historical and cultural richness and complexity of language itself.
  7. Lukasiewicz, T.: Uncertainty reasoning for the Semantic Web (2017) 0.02
    0.0150679685 = product of:
      0.105475776 = sum of:
        0.105475776 = weight(_text_:industry in 3939) [ClassicSimilarity], result of:
          0.105475776 = score(doc=3939,freq=2.0), product of:
            0.2351482 = queryWeight, product of:
              5.799733 = idf(docFreq=363, maxDocs=44218)
              0.04054466 = queryNorm
            0.4485502 = fieldWeight in 3939, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.799733 = idf(docFreq=363, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3939)
      0.14285715 = coord(1/7)
    
    Abstract
    The Semantic Web has attracted much attention, both from academia and industry. An important role in research towards the Semantic Web is played by formalisms and technologies for handling uncertainty and/or vagueness. In this paper, I first provide some motivating examples for handling uncertainty and/or vagueness in the Semantic Web. I then give an overview of some own formalisms for handling uncertainty and/or vagueness in the Semantic Web.
  8. Daconta, M.C.; Oberst, L.J.; Smith, K.T.: ¬The Semantic Web : A guide to the future of XML, Web services and knowledge management (2003) 0.01
    0.013213156 = product of:
      0.046246044 = sum of:
        0.035259563 = weight(_text_:management in 320) [ClassicSimilarity], result of:
          0.035259563 = score(doc=320,freq=6.0), product of:
            0.13666032 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.04054466 = queryNorm
            0.25800878 = fieldWeight in 320, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.03125 = fieldNorm(doc=320)
        0.010986483 = product of:
          0.021972965 = sum of:
            0.021972965 = weight(_text_:22 in 320) [ClassicSimilarity], result of:
              0.021972965 = score(doc=320,freq=2.0), product of:
                0.14198048 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04054466 = queryNorm
                0.15476047 = fieldWeight in 320, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=320)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Date
    22. 5.2007 10:37:38
    LCSH
    Knowledge management
    Subject
    Knowledge management
  9. Semantic Web services challenge : results from the first year (2009) 0.01
    0.012915401 = product of:
      0.0904078 = sum of:
        0.0904078 = weight(_text_:industry in 2479) [ClassicSimilarity], result of:
          0.0904078 = score(doc=2479,freq=2.0), product of:
            0.2351482 = queryWeight, product of:
              5.799733 = idf(docFreq=363, maxDocs=44218)
              0.04054466 = queryNorm
            0.3844716 = fieldWeight in 2479, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.799733 = idf(docFreq=363, maxDocs=44218)
              0.046875 = fieldNorm(doc=2479)
      0.14285715 = coord(1/7)
    
    Abstract
    Service-Oriented Computing is one of the most promising software engineering trends for future distributed systems. Currently there are many different approaches to semantic web service descriptions and many frameworks built around them. Yet a common understanding, evaluation scheme, and test bed to compare and classify these frameworks in terms of their abilities and shortcomings, is still missing. "Semantic Web Services Challenge" is an edited volume that develops this common understanding of the various technologies intended to facilitate the automation of mediation, choreography and discovery for Web Services using semantic annotations. "Semantic Web Services Challenge" is designed for a professional audience composed of practitioners and researchers in industry. Professionals can use this book to evaluate SWS technology for their potential practical use. The book is also suitable for advanced-level students in computer science.
  10. Davies, J.; Fensel, D.; Harmelen, F. van: Conclusions: ontology-driven knowledge management : towards the Semantic Web? (2004) 0.01
    0.011632639 = product of:
      0.08142847 = sum of:
        0.08142847 = weight(_text_:management in 4407) [ClassicSimilarity], result of:
          0.08142847 = score(doc=4407,freq=8.0), product of:
            0.13666032 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.04054466 = queryNorm
            0.5958457 = fieldWeight in 4407, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0625 = fieldNorm(doc=4407)
      0.14285715 = coord(1/7)
    
    Abstract
    The global economy is rapidly becoming more and more knowledge intensive. Knowledge is now widely recognized as the fourth production factor, on an equal footing with the traditional production factors of labour, capital and materials. Managing knowledge is as important as the traditional management of labour, capital and materials. In this book, we have shown how Semantic Web technology can make an important contribution to knowledge management.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
  11. Metadata and semantics research : 7th Research Conference, MTSR 2013 Thessaloniki, Greece, November 19-22, 2013. Proceedings (2013) 0.01
    0.011081637 = product of:
      0.038785726 = sum of:
        0.025190646 = weight(_text_:management in 1155) [ClassicSimilarity], result of:
          0.025190646 = score(doc=1155,freq=4.0), product of:
            0.13666032 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.04054466 = queryNorm
            0.18433036 = fieldWeight in 1155, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1155)
        0.013595079 = product of:
          0.027190158 = sum of:
            0.027190158 = weight(_text_:22 in 1155) [ClassicSimilarity], result of:
              0.027190158 = score(doc=1155,freq=4.0), product of:
                0.14198048 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04054466 = queryNorm
                0.19150631 = fieldWeight in 1155, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1155)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    The MTSR 2013 program and the contents of these proceedings show a rich diversity of research and practices, drawing on problems from metadata and semantically focused tools and technologies, linked data, cross-language semantics, ontologies, metadata models, and semantic system and metadata standards. The general session of the conference included 18 papers covering a broad spectrum of topics, proving the interdisciplinary field of metadata, and was divided into three main themes: platforms for research data sets, system architecture and data management; metadata and ontology validation, evaluation, mapping and interoperability; and content management. Metadata as a research topic is maturing, and the conference also supported the following five tracks: Metadata and Semantics for Open Repositories, Research Information Systems and Data Infrastructures; Metadata and Semantics for Cultural Collections and Applications; Metadata and Semantics for Agriculture, Food and Environment; Big Data and Digital Libraries in Health, Science and Technology; and European and National Projects, and Project Networking. Each track had a rich selection of papers, giving broader diversity to MTSR, and enabling deeper exploration of significant topics.
    Date
    17.12.2013 12:51:22
  12. Kaminski, R.; Schaub, T.; Wanko, P.: ¬A tutorial on hybrid answer set solving with clingo (2017) 0.01
    0.010762835 = product of:
      0.07533984 = sum of:
        0.07533984 = weight(_text_:industry in 3937) [ClassicSimilarity], result of:
          0.07533984 = score(doc=3937,freq=2.0), product of:
            0.2351482 = queryWeight, product of:
              5.799733 = idf(docFreq=363, maxDocs=44218)
              0.04054466 = queryNorm
            0.320393 = fieldWeight in 3937, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.799733 = idf(docFreq=363, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3937)
      0.14285715 = coord(1/7)
    
    Abstract
    Answer Set Programming (ASP) has become an established paradigm for Knowledge Representation and Reasoning, in particular, when it comes to solving knowledge-intense combinatorial (optimization) problems. ASP's unique pairing of a simple yet rich modeling language with highly performant solving technology has led to an increasing interest in ASP in academia as well as industry. To further boost this development and make ASP fit for real world applications it is indispensable to equip it with means for an easy integration into software environments and for adding complementary forms of reasoning. In this tutorial, we describe how both issues are addressed in the ASP system clingo. At first, we outline features of clingo's application programming interface (API) that are essential for multi-shot ASP solving, a technique for dealing with continuously changing logic programs. This is illustrated by realizing two exemplary reasoning modes, namely branch-and-bound-based optimization and incremental ASP solving. We then switch to the design of the API for integrating complementary forms of reasoning and detail this in an extensive case study dealing with the integration of difference constraints. We show how the syntax of these constraints is added to the modeling language and seamlessly merged into the grounding process. We then develop in detail a corresponding theory propagator for difference constraints and present how it is integrated into clingo's solving process.
  13. Fensel, D.; Staab, S.; Studer, R.; Harmelen, F. van; Davies, J.: ¬A future perspective : exploiting peer-to-peer and the Semantic Web for knowledge management (2004) 0.01
    0.0101785585 = product of:
      0.07124991 = sum of:
        0.07124991 = weight(_text_:management in 2262) [ClassicSimilarity], result of:
          0.07124991 = score(doc=2262,freq=8.0), product of:
            0.13666032 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.04054466 = queryNorm
            0.521365 = fieldWeight in 2262, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2262)
      0.14285715 = coord(1/7)
    
    Abstract
    Over the past few years, we have seen a growing interest in the potential of both peer-to-peer (P2P) computing and the use of more formal approaches to knowledge management, involving the development of ontologies. This penultimate chapter discusses possibilities that both approaches may offer for more effective and efficient knowledge management. In particular, we investigate how the two paradigms may be combined. In this chapter, we describe our vision in terms of a set of future steps that need to be taken to bring the results described in earlier chapters to their full potential.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
  14. Shoffner, M.; Greenberg, J.; Kramer-Duffield, J.; Woodbury, D.: Web 2.0 semantic systems : collaborative learning in science (2008) 0.01
    0.008955315 = product of:
      0.0313436 = sum of:
        0.020357117 = weight(_text_:management in 2661) [ClassicSimilarity], result of:
          0.020357117 = score(doc=2661,freq=2.0), product of:
            0.13666032 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.04054466 = queryNorm
            0.14896142 = fieldWeight in 2661, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.03125 = fieldNorm(doc=2661)
        0.010986483 = product of:
          0.021972965 = sum of:
            0.021972965 = weight(_text_:22 in 2661) [ClassicSimilarity], result of:
              0.021972965 = score(doc=2661,freq=2.0), product of:
                0.14198048 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04054466 = queryNorm
                0.15476047 = fieldWeight in 2661, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2661)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    The basic goal of education within a discipline is to transform a novice into an expert. This entails moving the novice toward the "semantic space" that the expert inhabits-the space of concepts, meanings, vocabularies, and other intellectual constructs that comprise the discipline. Metadata is significant to this goal in digitally mediated education environments. Encoding the experts' semantic space not only enables the sharing of semantics among discipline scientists, but also creates an environment that bridges the semantic gap between the common vocabulary of the novice and the granular descriptive language of the seasoned scientist (Greenberg, et al, 2005). Developments underlying the Semantic Web, where vocabularies are formalized in the Web Ontology Language (OWL), and Web 2.0 approaches of user-generated folksonomies provide an infrastructure for linking vocabulary systems and promoting group learning via metadata literacy. Group learning is a pedagogical approach to teaching that harnesses the phenomenon of "collective intelligence" to increase learning by means of collaboration. Learning a new semantic system can be daunting for a novice, and yet it is integral to advance one's knowledge in a discipline and retain interest. These ideas are key to the "BOT 2.0: Botany through Web 2.0, the Memex and Social Learning" project (Bot 2.0).72 Bot 2.0 is a collaboration involving the North Carolina Botanical Garden, the UNC SILS Metadata Research center, and the Renaissance Computing Institute (RENCI). Bot 2.0 presents a curriculum utilizing a memex as a way for students to link and share digital information, working asynchronously in an environment beyond the traditional classroom. Our conception of a memex is not a centralized black box but rather a flexible, distributed framework that uses the most salient and easiest-to-use collaborative platforms (e.g., Facebook, Flickr, wiki and blog technology) for personal information management. By meeting students "where they live" digitally, we hope to attract students to the study of botanical science. A key aspect is to teach students scientific terminology and about the value of metadata, an inherent function in several of the technologies and in the instructional approach we are utilizing. This poster will report on a study examining the value of both folksonomies and taxonomies for post-secondary college students learning plant identification. Our data is drawn from a curriculum involving a virtual independent learning portion and a "BotCamp" weekend at UNC, where students work with digital plan specimens that they have captured. Results provide some insight into the importance of collaboration and shared vocabulary for gaining confidence and for student progression from novice to expert in botany.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  15. Brunetti, J.M.; Roberto García, R.: User-centered design and evaluation of overview components for semantic data exploration (2014) 0.01
    0.008955315 = product of:
      0.0313436 = sum of:
        0.020357117 = weight(_text_:management in 1626) [ClassicSimilarity], result of:
          0.020357117 = score(doc=1626,freq=2.0), product of:
            0.13666032 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.04054466 = queryNorm
            0.14896142 = fieldWeight in 1626, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.03125 = fieldNorm(doc=1626)
        0.010986483 = product of:
          0.021972965 = sum of:
            0.021972965 = weight(_text_:22 in 1626) [ClassicSimilarity], result of:
              0.021972965 = score(doc=1626,freq=2.0), product of:
                0.14198048 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04054466 = queryNorm
                0.15476047 = fieldWeight in 1626, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1626)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.5, S.519-536
  16. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.01
    0.008955315 = product of:
      0.0313436 = sum of:
        0.020357117 = weight(_text_:management in 1634) [ClassicSimilarity], result of:
          0.020357117 = score(doc=1634,freq=2.0), product of:
            0.13666032 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.04054466 = queryNorm
            0.14896142 = fieldWeight in 1634, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.03125 = fieldNorm(doc=1634)
        0.010986483 = product of:
          0.021972965 = sum of:
            0.021972965 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
              0.021972965 = score(doc=1634,freq=2.0), product of:
                0.14198048 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04054466 = queryNorm
                0.15476047 = fieldWeight in 1634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1634)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.5, S.494-518
  17. Uren, V.; Cimiano, P.; Iria, J.; Handschuh, S.; Vargas-Vera, M.; Motta, E.; Ciravegnac, F.: Semantic annotation for knowledge management : requirements and a survey of the state of the art (2006) 0.01
    0.0075556207 = product of:
      0.052889343 = sum of:
        0.052889343 = weight(_text_:management in 229) [ClassicSimilarity], result of:
          0.052889343 = score(doc=229,freq=6.0), product of:
            0.13666032 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.04054466 = queryNorm
            0.38701317 = fieldWeight in 229, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.046875 = fieldNorm(doc=229)
      0.14285715 = coord(1/7)
    
    Abstract
    While much of a company's knowledge can be found in text repositories, current content management systems have limited capabilities for structuring and interpreting documents. In the emerging Semantic Web, search, interpretation and aggregation can be addressed by ontology-based semantic mark-up. In this paper, we examine semantic annotation, identify a number of requirements, and review the current generation of semantic annotation systems. This analysis shows that, while there is still some way to go before semantic annotation tools will be able to address fully all the knowledge management needs, research in the area is active and making good progress.
  18. Towards the Semantic Web : ontology-driven knowledge management (2004) 0.01
    0.0072339564 = product of:
      0.050637692 = sum of:
        0.050637692 = weight(_text_:management in 4401) [ClassicSimilarity], result of:
          0.050637692 = score(doc=4401,freq=22.0), product of:
            0.13666032 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.04054466 = queryNorm
            0.3705369 = fieldWeight in 4401, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0234375 = fieldNorm(doc=4401)
      0.14285715 = coord(1/7)
    
    Abstract
    With the current changes driven by the expansion of the World Wide Web, this book uses a different approach from other books on the market: it applies ontologies to electronically available information to improve the quality of knowledge management in large and distributed organizations. Ontologies are formal theories supporting knowledge sharing and reuse. They can be used to explicitly represent semantics of semi-structured information. These enable sophisticated automatic support for acquiring, maintaining and accessing information. Methodology and tools are developed for intelligent access to large volumes of semi-structured and textual information sources in intra- and extra-, and internet-based environments to employ the full power of ontologies in supporting knowledge management from the information client perspective and the information provider. The aim of the book is to support efficient and effective knowledge management and focuses on weakly-structured online information sources. It is aimed primarily at researchers in the area of knowledge management and information retrieval and will also be a useful reference for students in computer science at the postgraduate level and for business managers who are aiming to increase the corporations' information infrastructure. The Semantic Web is a very important initiative affecting the future of the WWW that is currently generating huge interest. The book covers several highly significant contributions to the semantic web research effort, including a new language for defining ontologies, several novel software tools and a coherent methodology for the application of the tools for business advantage. It also provides 3 case studies which give examples of the real benefits to be derived from the adoption of semantic-web based ontologies in "real world" situations. As such, the book is an excellent mixture of theory, tools and applications in an important area of WWW research. * Provides guidelines for introducing knowledge management concepts and tools into enterprises, to help knowledge providers present their knowledge efficiently and effectively. * Introduces an intelligent search tool that supports users in accessing information and a tool environment for maintenance, conversion and acquisition of information sources. * Discusses three large case studies which will help to develop the technology according to the actual needs of large and or virtual organisations and will provide a testbed for evaluating tools and methods. The book is aimed at people with at least a good understanding of existing WWW technology and some level of technical understanding of the underpinning technologies (XML/RDF). It will be of interest to graduate students, academic and industrial researchers in the field, and the many industrial personnel who are tracking WWW technology developments in order to understand the business implications. It could also be used to support undergraduate courses in the area but is not itself an introductory text.
    Content
    Inhalt: OIL and DAML + OIL: Ontology Languages for the Semantic Web (pages 11-31) / Dieter Fensel, Frank van Harmelen and Ian Horrocks A Methodology for Ontology-Based Knowledge Management (pages 33-46) / York Sure and Rudi Studer Ontology Management: Storing, Aligning and Maintaining Ontologies (pages 47-69) / Michel Klein, Ying Ding, Dieter Fensel and Borys Omelayenko Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema (pages 71-89) / Jeen Broekstra, Arjohn Kampman and Frank van Harmelen Generating Ontologies for the Semantic Web: OntoBuilder (pages 91-115) / R. H. P. Engels and T. Ch. Lech OntoEdit: Collaborative Engineering of Ontologies (pages 117-132) / York Sure, Michael Erdmann and Rudi Studer QuizRDF: Search Technology for the Semantic Web (pages 133-144) / John Davies, Richard Weeks and Uwe Krohn Spectacle (pages 145-159) / Christiaan Fluit, Herko ter Horst, Jos van der Meer, Marta Sabou and Peter Mika OntoShare: Evolving Ontologies in a Knowledge Sharing System (pages 161-177) / John Davies, Alistair Duke and Audrius Stonkus Ontology Middleware and Reasoning (pages 179-196) / Atanas Kiryakov, Kiril Simov and Damyan Ognyanov Ontology-Based Knowledge Management at Work: The Swiss Life Case Studies (pages 197-218) / Ulrich Reimer, Peter Brockhausen, Thorsten Lau and Jacqueline R. Reich Field Experimenting with Semantic Web Tools in a Virtual Organization (pages 219-244) / Victor Iosif, Peter Mika, Rikard Larsson and Hans Akkermans A Future Perspective: Exploiting Peer-To-Peer and the Semantic Web for Knowledge Management (pages 245-264) / Dieter Fensel, Steffen Staab, Rudi Studer, Frank van Harmelen and John Davies Conclusions: Ontology-driven Knowledge Management - Towards the Semantic Web? (pages 265-266) / John Davies, Dieter Fensel and Frank van Harmelen
  19. Knitting the semantic Web (2007) 0.01
    0.0070493952 = product of:
      0.049345765 = sum of:
        0.049345765 = weight(_text_:united in 1397) [ClassicSimilarity], result of:
          0.049345765 = score(doc=1397,freq=2.0), product of:
            0.2274601 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.04054466 = queryNorm
            0.2169425 = fieldWeight in 1397, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1397)
      0.14285715 = coord(1/7)
    
    Abstract
    The Semantic Web, the extension that goes beyond the current Web, better enables computers and people to effectively work together by giving information well-defined meaning. Knitting the Semantic Web explains the interdisciplinary efforts underway to build a more library-like Web through "semantic knitting." The book examines tagging information with standardized semantic metadata to result in a network able to support computational activities and provide people with services efficiently. Leaders in library and information science, computer science, and information intensive domains provide insight and inspiration to give readers a greater understanding in the development, growth, and maintenance of the Semantic Web. Librarians are uniquely qualified to play a major role in the development and maintenance of the Semantic Web. Knitting the Semantic Web closely examines this crucial relationship in detail. This single source reviews the foundations, standards, and tools of the Semantic Web, as well as discussions on projects and perspectives. Many chapters include figures to illustrate concepts and ideas, and the entire text is extensively referenced. Topics in Knitting the Semantic Web include: - RDF, its expressive power, and its ability to underlie the new Library catalog card for the coming century - the value and application for controlled vocabularies - SKOS (Simple Knowledge Organization System), the newest Semantic Web language - managing scheme versioning in the Semantic Web - Physnet portal service for physics - Semantic Web technologies in biomedicine - developing the United Nations Food and Agriculture ontology - Friend Of A Friend (FOAF) vocabulary specification-with a real world case study at a university - and more Knitting the Semantic Web is a stimulating resource for professionals, researchers, educators, and students in library and information science, computer science, information architecture, Web design, and Web services.
  20. Davies, J.; Duke, A.; Stonkus, A.: OntoShare: evolving ontologies in a knowledge sharing system (2004) 0.01
    0.006732484 = product of:
      0.047127385 = sum of:
        0.047127385 = weight(_text_:management in 4409) [ClassicSimilarity], result of:
          0.047127385 = score(doc=4409,freq=14.0), product of:
            0.13666032 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.04054466 = queryNorm
            0.34485054 = fieldWeight in 4409, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4409)
      0.14285715 = coord(1/7)
    
    Abstract
    We saw in the introduction how the Semantic Web makes possible a new generation of knowledge management tools. We now turn our attention more specifically to Semantic Web based support for virtual communities of practice. The notion of communities of practice has attracted much attention in the field of knowledge management. Communities of practice are groups within (or sometimes across) organizations who share a common set of information needs or problems. They are typically not a formal organizational unit but an informal network, each sharing in part a common agenda and shared interests or issues. In one example it was found that a lot of knowledge sharing among copier engineers took place through informal exchanges, often around a water cooler. As well as local, geographically based communities, trends towards flexible working and globalisation have led to interest in supporting dispersed communities using Internet technology. The challenge for organizations is to support such communities and make them effective. Provided with an ontology meeting the needs of a particular community of practice, knowledge management tools can arrange knowledge assets into the predefined conceptual classes of the ontology, allowing more natural and intuitive access to knowledge. Knowledge management tools must give users the ability to organize information into a controllable asset. Building an intranet-based store of information is not sufficient for knowledge management; the relationships within the stored information are vital. These relationships cover such diverse issues as relative importance, context, sequence, significance, causality and association. The potential for knowledge management tools is vast; not only can they make better use of the raw information already available, but they can sift, abstract and help to share new information, and present it to users in new and compelling ways.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a

Years

Languages

  • e 75
  • d 10

Types

  • a 49
  • m 24
  • el 18
  • s 15
  • n 2
  • x 1
  • More… Less…

Subjects