Search (6 results, page 1 of 1)

  • × theme_ss:"Semantic Web"
  1. Shoffner, M.; Greenberg, J.; Kramer-Duffield, J.; Woodbury, D.: Web 2.0 semantic systems : collaborative learning in science (2008) 0.11
    0.107627146 = product of:
      0.17937857 = sum of:
        0.067705624 = weight(_text_:literacy in 2661) [ClassicSimilarity], result of:
          0.067705624 = score(doc=2661,freq=2.0), product of:
            0.26121095 = queryWeight, product of:
              5.8650045 = idf(docFreq=340, maxDocs=44218)
              0.044537213 = queryNorm
            0.25919902 = fieldWeight in 2661, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.8650045 = idf(docFreq=340, maxDocs=44218)
              0.03125 = fieldNorm(doc=2661)
        0.02942694 = weight(_text_:study in 2661) [ClassicSimilarity], result of:
          0.02942694 = score(doc=2661,freq=4.0), product of:
            0.1448085 = queryWeight, product of:
              3.2514048 = idf(docFreq=4653, maxDocs=44218)
              0.044537213 = queryNorm
            0.2032128 = fieldWeight in 2661, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2514048 = idf(docFreq=4653, maxDocs=44218)
              0.03125 = fieldNorm(doc=2661)
        0.082246006 = sum of:
          0.058109295 = weight(_text_:teaching in 2661) [ClassicSimilarity], result of:
            0.058109295 = score(doc=2661,freq=2.0), product of:
              0.24199244 = queryWeight, product of:
                5.433489 = idf(docFreq=524, maxDocs=44218)
                0.044537213 = queryNorm
              0.24012855 = fieldWeight in 2661, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.433489 = idf(docFreq=524, maxDocs=44218)
                0.03125 = fieldNorm(doc=2661)
          0.02413671 = weight(_text_:22 in 2661) [ClassicSimilarity], result of:
            0.02413671 = score(doc=2661,freq=2.0), product of:
              0.15596174 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.044537213 = queryNorm
              0.15476047 = fieldWeight in 2661, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2661)
      0.6 = coord(3/5)
    
    Abstract
    The basic goal of education within a discipline is to transform a novice into an expert. This entails moving the novice toward the "semantic space" that the expert inhabits-the space of concepts, meanings, vocabularies, and other intellectual constructs that comprise the discipline. Metadata is significant to this goal in digitally mediated education environments. Encoding the experts' semantic space not only enables the sharing of semantics among discipline scientists, but also creates an environment that bridges the semantic gap between the common vocabulary of the novice and the granular descriptive language of the seasoned scientist (Greenberg, et al, 2005). Developments underlying the Semantic Web, where vocabularies are formalized in the Web Ontology Language (OWL), and Web 2.0 approaches of user-generated folksonomies provide an infrastructure for linking vocabulary systems and promoting group learning via metadata literacy. Group learning is a pedagogical approach to teaching that harnesses the phenomenon of "collective intelligence" to increase learning by means of collaboration. Learning a new semantic system can be daunting for a novice, and yet it is integral to advance one's knowledge in a discipline and retain interest. These ideas are key to the "BOT 2.0: Botany through Web 2.0, the Memex and Social Learning" project (Bot 2.0).72 Bot 2.0 is a collaboration involving the North Carolina Botanical Garden, the UNC SILS Metadata Research center, and the Renaissance Computing Institute (RENCI). Bot 2.0 presents a curriculum utilizing a memex as a way for students to link and share digital information, working asynchronously in an environment beyond the traditional classroom. Our conception of a memex is not a centralized black box but rather a flexible, distributed framework that uses the most salient and easiest-to-use collaborative platforms (e.g., Facebook, Flickr, wiki and blog technology) for personal information management. By meeting students "where they live" digitally, we hope to attract students to the study of botanical science. A key aspect is to teach students scientific terminology and about the value of metadata, an inherent function in several of the technologies and in the instructional approach we are utilizing. This poster will report on a study examining the value of both folksonomies and taxonomies for post-secondary college students learning plant identification. Our data is drawn from a curriculum involving a virtual independent learning portion and a "BotCamp" weekend at UNC, where students work with digital plan specimens that they have captured. Results provide some insight into the importance of collaboration and shared vocabulary for gaining confidence and for student progression from novice to expert in botany.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  2. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.03
    0.0322106 = product of:
      0.0805265 = sum of:
        0.062423967 = weight(_text_:study in 4649) [ClassicSimilarity], result of:
          0.062423967 = score(doc=4649,freq=8.0), product of:
            0.1448085 = queryWeight, product of:
              3.2514048 = idf(docFreq=4653, maxDocs=44218)
              0.044537213 = queryNorm
            0.43107945 = fieldWeight in 4649, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2514048 = idf(docFreq=4653, maxDocs=44218)
              0.046875 = fieldNorm(doc=4649)
        0.018102532 = product of:
          0.036205065 = sum of:
            0.036205065 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.036205065 = score(doc=4649,freq=2.0), product of:
                0.15596174 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044537213 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    More and more cultural heritage institutions publish their collections, vocabularies and metadata on the Web. The resulting Web of linked cultural data opens up exciting new possibilities for searching and browsing through these cultural heritage collections. We report on ongoing work in which we investigate the estimation of relevance in this Web of Culture. We study existing measures of semantic distance and how they apply to two use cases. The use cases relate to the structured, multilingual and multimodal nature of the Culture Web. We distinguish between measures using the Web, such as Google distance and PMI, and measures using the Linked Data Web, i.e. the semantic structure of metadata vocabularies. We perform a small study in which we compare these semantic distance measures to human judgements of relevance. Although it is too early to draw any definitive conclusions, the study provides new insights into the applicability of semantic distance measures to the Web of Culture, and clear starting points for further research.
    Date
    26.12.2011 13:40:22
  3. Hitzler, P.; Krötzsch, M.; Rudolph, S.: Foundations of Semantic Web technologies (2010) 0.02
    0.019945055 = product of:
      0.049862638 = sum of:
        0.020807989 = weight(_text_:study in 359) [ClassicSimilarity], result of:
          0.020807989 = score(doc=359,freq=2.0), product of:
            0.1448085 = queryWeight, product of:
              3.2514048 = idf(docFreq=4653, maxDocs=44218)
              0.044537213 = queryNorm
            0.14369315 = fieldWeight in 359, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2514048 = idf(docFreq=4653, maxDocs=44218)
              0.03125 = fieldNorm(doc=359)
        0.029054647 = product of:
          0.058109295 = sum of:
            0.058109295 = weight(_text_:teaching in 359) [ClassicSimilarity], result of:
              0.058109295 = score(doc=359,freq=2.0), product of:
                0.24199244 = queryWeight, product of:
                  5.433489 = idf(docFreq=524, maxDocs=44218)
                  0.044537213 = queryNorm
                0.24012855 = fieldWeight in 359, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.433489 = idf(docFreq=524, maxDocs=44218)
                  0.03125 = fieldNorm(doc=359)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This text introduces the standardized knowledge representation languages for modeling ontologies operating at the core of the semantic web. It covers RDF schema, Web Ontology Language (OWL), rules, query languages, the OWL 2 revision, and the forthcoming Rule Interchange Format (RIF). A 2010 CHOICE Outstanding Academic Title ! The nine chapters of the book guide the reader through the major foundational languages for the semantic Web and highlight the formal semantics. ! the book has very interesting supporting material and exercises, is oriented to W3C standards, and provides the necessary foundations for the semantic Web. It will be easy to follow by the computer scientist who already has a basic background on semantic Web issues; it will also be helpful for both self-study and teaching purposes. I recommend this book primarily as a complementary textbook for a graduate or undergraduate course in a computer science or a Web science academic program. --Computing Reviews, February 2010 This book is unique in several respects. It contains an in-depth treatment of all the major foundational languages for the Semantic Web and provides a full treatment of the underlying formal semantics, which is central to the Semantic Web effort. It is also the very first textbook that addresses the forthcoming W3C recommended standards OWL 2 and RIF. Furthermore, the covered topics and underlying concepts are easily accessible for the reader due to a clear separation of syntax and semantics ! I am confident this book will be well received and play an important role in training a larger number of students who will seek to become proficient in this growing discipline.
  4. Gendt, M. van; Isaac, I.; Meij, L. van der; Schlobach, S.: Semantic Web techniques for multiple views on heterogeneous collections : a case study (2006) 0.02
    0.019725805 = product of:
      0.049314514 = sum of:
        0.031211983 = weight(_text_:study in 2418) [ClassicSimilarity], result of:
          0.031211983 = score(doc=2418,freq=2.0), product of:
            0.1448085 = queryWeight, product of:
              3.2514048 = idf(docFreq=4653, maxDocs=44218)
              0.044537213 = queryNorm
            0.21553972 = fieldWeight in 2418, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2514048 = idf(docFreq=4653, maxDocs=44218)
              0.046875 = fieldNorm(doc=2418)
        0.018102532 = product of:
          0.036205065 = sum of:
            0.036205065 = weight(_text_:22 in 2418) [ClassicSimilarity], result of:
              0.036205065 = score(doc=2418,freq=2.0), product of:
                0.15596174 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044537213 = queryNorm
                0.23214069 = fieldWeight in 2418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2418)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
  5. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.02
    0.016598118 = product of:
      0.041495293 = sum of:
        0.02942694 = weight(_text_:study in 1634) [ClassicSimilarity], result of:
          0.02942694 = score(doc=1634,freq=4.0), product of:
            0.1448085 = queryWeight, product of:
              3.2514048 = idf(docFreq=4653, maxDocs=44218)
              0.044537213 = queryNorm
            0.2032128 = fieldWeight in 1634, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2514048 = idf(docFreq=4653, maxDocs=44218)
              0.03125 = fieldNorm(doc=1634)
        0.012068355 = product of:
          0.02413671 = sum of:
            0.02413671 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
              0.02413671 = score(doc=1634,freq=2.0), product of:
                0.15596174 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044537213 = queryNorm
                0.15476047 = fieldWeight in 1634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1634)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
  6. Zeng, M.L.; Fan, W.; Lin, X.: SKOS for an integrated vocabulary structure (2008) 0.02
    0.015150088 = product of:
      0.03787522 = sum of:
        0.020807989 = weight(_text_:study in 2654) [ClassicSimilarity], result of:
          0.020807989 = score(doc=2654,freq=2.0), product of:
            0.1448085 = queryWeight, product of:
              3.2514048 = idf(docFreq=4653, maxDocs=44218)
              0.044537213 = queryNorm
            0.14369315 = fieldWeight in 2654, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2514048 = idf(docFreq=4653, maxDocs=44218)
              0.03125 = fieldNorm(doc=2654)
        0.017067233 = product of:
          0.034134466 = sum of:
            0.034134466 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.034134466 = score(doc=2654,freq=4.0), product of:
                0.15596174 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044537213 = queryNorm
                0.21886435 = fieldWeight in 2654, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In order to transfer the Chinese Classified Thesaurus (CCT) into a machine-processable format and provide CCT-based Web services, a pilot study has been conducted in which a variety of selected CCT classes and mapped thesaurus entries are encoded with SKOS. OWL and RDFS are also used to encode the same contents for the purposes of feasibility and cost-benefit comparison. CCT is a collected effort led by the National Library of China. It is an integration of the national standards Chinese Library Classification (CLC) 4th edition and Chinese Thesaurus (CT). As a manually created mapping product, CCT provides for each of the classes the corresponding thesaurus terms, and vice versa. The coverage of CCT includes four major clusters: philosophy, social sciences and humanities, natural sciences and technologies, and general works. There are 22 main-classes, 52,992 sub-classes and divisions, 110,837 preferred thesaurus terms, 35,690 entry terms (non-preferred terms), and 59,738 pre-coordinated headings (Chinese Classified Thesaurus, 2005) Major challenges of encoding this large vocabulary comes from its integrated structure. CCT is a result of the combination of two structures (illustrated in Figure 1): a thesaurus that uses ISO-2788 standardized structure and a classification scheme that is basically enumerative, but provides some flexibility for several kinds of synthetic mechanisms Other challenges include the complex relationships caused by differences of granularities of two original schemes and their presentation with various levels of SKOS elements; as well as the diverse coordination of entries due to the use of auxiliary tables and pre-coordinated headings derived from combining classes, subdivisions, and thesaurus terms, which do not correspond to existing unique identifiers. The poster reports the progress, shares the sample SKOS entries, and summarizes problems identified during the SKOS encoding process. Although OWL Lite and OWL Full provide richer expressiveness, the cost-benefit issues and the final purposes of encoding CCT raise questions of using such approaches.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas