Search (10 results, page 1 of 1)

  • × author_ss:"Leydesdorff, L."
  1. Leydesdorff, L.; Bornmann, L.: Integrated impact indicators compared with impact factors : an alternative research design with policy implications (2011) 0.00
    0.004715261 = product of:
      0.028291566 = sum of:
        0.028291566 = product of:
          0.056583133 = sum of:
            0.056583133 = weight(_text_:etc in 4919) [ClassicSimilarity], result of:
              0.056583133 = score(doc=4919,freq=2.0), product of:
                0.18910104 = queryWeight, product of:
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.03491209 = queryNorm
                0.2992217 = fieldWeight in 4919, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4919)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    In bibliometrics, the association of "impact" with central-tendency statistics is mistaken. Impacts add up, and citation curves therefore should be integrated instead of averaged. For example, the journals MIS Quarterly and Journal of the American Society for Information Science and Technology differ by a factor of 2 in terms of their respective impact factors (IF), but the journal with the lower IF has the higher impact. Using percentile ranks (e.g., top-1%, top-10%, etc.), an Integrated Impact Indicator (I3) can be based on integration of the citation curves, but after normalization of the citation curves to the same scale. The results across document sets can be compared as percentages of the total impact of a reference set. Total number of citations, however, should not be used instead because the shape of the citation curves is then not appreciated. I3 can be applied to any document set and any citation window. The results of the integration (summation) are fully decomposable in terms of journals or institutional units such as nations, universities, and so on because percentile ranks are determined at the paper level. In this study, we first compare I3 with IFs for the journals in two Institute for Scientific Information subject categories ("Information Science & Library Science" and "Multidisciplinary Sciences"). The library and information science set is additionally decomposed in terms of nations. Policy implications of this possible paradigm shift in citation impact analysis are specified.
  2. Leydesdorff, L.; Zhou, P.; Bornmann, L.: How can journal impact factors be normalized across fields of science? : An assessment in terms of percentile ranks and fractional counts (2013) 0.00
    0.004715261 = product of:
      0.028291566 = sum of:
        0.028291566 = product of:
          0.056583133 = sum of:
            0.056583133 = weight(_text_:etc in 532) [ClassicSimilarity], result of:
              0.056583133 = score(doc=532,freq=2.0), product of:
                0.18910104 = queryWeight, product of:
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.03491209 = queryNorm
                0.2992217 = fieldWeight in 532, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=532)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Using the CD-ROM version of the Science Citation Index 2010 (N = 3,705 journals), we study the (combined) effects of (a) fractional counting on the impact factor (IF) and (b) transformation of the skewed citation distributions into a distribution of 100 percentiles and six percentile rank classes (top-1%, top-5%, etc.). Do these approaches lead to field-normalized impact measures for journals? In addition to the 2-year IF (IF2), we consider the 5-year IF (IF5), the respective numerators of these IFs, and the number of Total Cites, counted both as integers and fractionally. These various indicators are tested against the hypothesis that the classification of journals into 11 broad fields by PatentBoard/NSF (National Science Foundation) provides statistically significant between-field effects. Using fractional counting the between-field variance is reduced by 91.7% in the case of IF5, and by 79.2% in the case of IF2. However, the differences in citation counts are not significantly affected by fractional counting. These results accord with previous studies, but the longer citation window of a fractionally counted IF5 can lead to significant improvement in the normalization across fields.
  3. Baumgartner, S.E.; Leydesdorff, L.: Group-based trajectory modeling (GBTM) of citations in scholarly literature : dynamic qualities of "transient" and "sticky knowledge claims" (2014) 0.00
    0.004715261 = product of:
      0.028291566 = sum of:
        0.028291566 = product of:
          0.056583133 = sum of:
            0.056583133 = weight(_text_:etc in 1241) [ClassicSimilarity], result of:
              0.056583133 = score(doc=1241,freq=2.0), product of:
                0.18910104 = queryWeight, product of:
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.03491209 = queryNorm
                0.2992217 = fieldWeight in 1241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1241)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Group-based trajectory modeling (GBTM) is applied to the citation curves of articles in six journals and to all citable items in a single field of science (virology, 24 journals) to distinguish among the developmental trajectories in subpopulations. Can citation patterns of highly-cited papers be distinguished in an early phase as "fast-breaking" papers? Can "late bloomers" or "sleeping beauties" be identified? Most interesting, we find differences between "sticky knowledge claims" that continue to be cited more than 10 years after publication and "transient knowledge claims" that show a decay pattern after reaching a peak within a few years. Only papers following the trajectory of a "sticky knowledge claim" can be expected to have a sustained impact. These findings raise questions about indicators of "excellence" that use aggregated citation rates after 2 or 3 years (e.g., impact factors). Because aggregated citation curves can also be composites of the two patterns, fifth-order polynomials (with four bending points) are needed to capture citation curves precisely. For the journals under study, the most frequently cited groups were furthermore much smaller than 10%. Although GBTM has proved a useful method for investigating differences among citation trajectories, the methodology does not allow us to define a percentage of highly cited papers inductively across different fields and journals. Using multinomial logistic regression, we conclude that predictor variables such as journal names, number of authors, etc., do not affect the stickiness of knowledge claims in terms of citations but only the levels of aggregated citations (which are field-specific).
  4. Leydesdorff, L.: ¬The construction and globalization of the knowledge base in inter-human communication systems (2003) 0.00
    0.0023650532 = product of:
      0.014190319 = sum of:
        0.014190319 = product of:
          0.028380638 = sum of:
            0.028380638 = weight(_text_:22 in 1621) [ClassicSimilarity], result of:
              0.028380638 = score(doc=1621,freq=2.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.23214069 = fieldWeight in 1621, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1621)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    22. 5.2003 19:48:04
  5. Leydesdorff, L.: Can networks of journal-journal citations be used as indicators of change in the social sciences? (2003) 0.00
    0.0023650532 = product of:
      0.014190319 = sum of:
        0.014190319 = product of:
          0.028380638 = sum of:
            0.028380638 = weight(_text_:22 in 4460) [ClassicSimilarity], result of:
              0.028380638 = score(doc=4460,freq=2.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.23214069 = fieldWeight in 4460, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4460)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    6.11.2005 19:02:22
  6. Leydesdorff, L.; Sun, Y.: National and international dimensions of the Triple Helix in Japan : university-industry-government versus international coauthorship relations (2009) 0.00
    0.0023650532 = product of:
      0.014190319 = sum of:
        0.014190319 = product of:
          0.028380638 = sum of:
            0.028380638 = weight(_text_:22 in 2761) [ClassicSimilarity], result of:
              0.028380638 = score(doc=2761,freq=2.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.23214069 = fieldWeight in 2761, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2761)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    22. 3.2009 19:07:20
  7. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.00
    0.0023650532 = product of:
      0.014190319 = sum of:
        0.014190319 = product of:
          0.028380638 = sum of:
            0.028380638 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
              0.028380638 = score(doc=4681,freq=2.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.23214069 = fieldWeight in 4681, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4681)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    8. 1.2019 18:22:45
  8. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.00
    0.0019708779 = product of:
      0.011825266 = sum of:
        0.011825266 = product of:
          0.023650533 = sum of:
            0.023650533 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
              0.023650533 = score(doc=4186,freq=2.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.19345059 = fieldWeight in 4186, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4186)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    22. 1.2011 12:51:07
  9. Hellsten, I.; Leydesdorff, L.: ¬The construction of interdisciplinarity : the development of the knowledge base and programmatic focus of the journal Climatic Change, 1977-2013 (2016) 0.00
    0.0019708779 = product of:
      0.011825266 = sum of:
        0.011825266 = product of:
          0.023650533 = sum of:
            0.023650533 = weight(_text_:22 in 3089) [ClassicSimilarity], result of:
              0.023650533 = score(doc=3089,freq=2.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.19345059 = fieldWeight in 3089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3089)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    24. 8.2016 17:53:22
  10. Leydesdorff, L.; Johnson, M.W.; Ivanova, I.: Toward a calculus of redundancy : signification, codification, and anticipation in cultural evolution (2018) 0.00
    0.0019708779 = product of:
      0.011825266 = sum of:
        0.011825266 = product of:
          0.023650533 = sum of:
            0.023650533 = weight(_text_:22 in 4463) [ClassicSimilarity], result of:
              0.023650533 = score(doc=4463,freq=2.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.19345059 = fieldWeight in 4463, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4463)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    29. 9.2018 11:22:09