Search (6 results, page 1 of 1)

  • × subject_ss:"Semantic Web"
  1. Multimedia content and the Semantic Web : methods, standards, and tools (2005) 0.03
    0.02760309 = product of:
      0.08280927 = sum of:
        0.022316987 = weight(_text_:searching in 150) [ClassicSimilarity], result of:
          0.022316987 = score(doc=150,freq=4.0), product of:
            0.14122958 = queryWeight, product of:
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.03491209 = queryNorm
            0.1580192 = fieldWeight in 150, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.060492285 = sum of:
          0.040010322 = weight(_text_:etc in 150) [ClassicSimilarity], result of:
            0.040010322 = score(doc=150,freq=4.0), product of:
              0.18910104 = queryWeight, product of:
                5.4164915 = idf(docFreq=533, maxDocs=44218)
                0.03491209 = queryNorm
              0.2115817 = fieldWeight in 150, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                5.4164915 = idf(docFreq=533, maxDocs=44218)
                0.01953125 = fieldNorm(doc=150)
          0.020481963 = weight(_text_:22 in 150) [ClassicSimilarity], result of:
            0.020481963 = score(doc=150,freq=6.0), product of:
              0.1222562 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03491209 = queryNorm
              0.16753313 = fieldWeight in 150, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.01953125 = fieldNorm(doc=150)
      0.33333334 = coord(2/6)
    
    Classification
    006.7 22
    Date
    7. 3.2007 19:30:22
    DDC
    006.7 22
    Footnote
    Rez. in: JASIST 58(2007) no.3, S.457-458 (A.M.A. Ahmad): "The concept of the semantic web has emerged because search engines and text-based searching are no longer adequate, as these approaches involve an extensive information retrieval process. The deployed searching and retrieving descriptors arc naturally subjective and their deployment is often restricted to the specific application domain for which the descriptors were configured. The new era of information technology imposes different kinds of requirements and challenges. Automatic extracted audiovisual features are required, as these features are more objective, domain-independent, and more native to audiovisual content. This book is a useful guide for researchers, experts, students, and practitioners; it is a very valuable reference and can lead them through their exploration and research in multimedia content and the semantic web. The book is well organized, and introduces the concept of the semantic web and multimedia content analysis to the reader through a logical sequence from standards and hypotheses through system examples, presenting relevant tools and methods. But in some chapters readers will need a good technical background to understand some of the details. Readers may attain sufficient knowledge here to start projects or research related to the book's theme; recent results and articles related to the active research area of integrating multimedia with semantic web technologies are included. This book includes full descriptions of approaches to specific problem domains such as content search, indexing, and retrieval. This book will be very useful to researchers in the multimedia content analysis field who wish to explore the benefits of emerging semantic web technologies in applying multimedia content approaches. The first part of the book covers the definition of the two basic terms multimedia content and semantic web. The Moving Picture Experts Group standards MPEG7 and MPEG21 are quoted extensively. In addition, the means of multimedia content description are elaborated upon and schematically drawn. This extensive description is introduced by authors who are actively involved in those standards and have been participating in the work of the International Organization for Standardization (ISO)/MPEG for many years. On the other hand, this results in bias against the ad hoc or nonstandard tools for multimedia description in favor of the standard approaches. This is a general book for multimedia content; more emphasis on the general multimedia description and extraction could be provided.
    Semantic web technologies are explained, and ontology representation is emphasized. There is an excellent summary of the fundamental theory behind applying a knowledge-engineering approach to vision problems. This summary represents the concept of the semantic web and multimedia content analysis. A definition of the fuzzy knowledge representation that can be used for realization in multimedia content applications has been provided, with a comprehensive analysis. The second part of the book introduces the multimedia content analysis approaches and applications. In addition, some examples of methods applicable to multimedia content analysis are presented. Multimedia content analysis is a very diverse field and concerns many other research fields at the same time; this creates strong diversity issues, as everything from low-level features (e.g., colors, DCT coefficients, motion vectors, etc.) up to the very high and semantic level (e.g., Object, Events, Tracks, etc.) are involved. The second part includes topics on structure identification (e.g., shot detection for video sequences), and object-based video indexing. These conventional analysis methods are supplemented by results on semantic multimedia analysis, including three detailed chapters on the development and use of knowledge models for automatic multimedia analysis. Starting from object-based indexing and continuing with machine learning, these three chapters are very logically organized. Because of the diversity of this research field, including several chapters of recent research results is not sufficient to cover the state of the art of multimedia. The editors of the book should write an introductory chapter about multimedia content analysis approaches, basic problems, and technical issues and challenges, and try to survey the state of the art of the field and thus introduce the field to the reader.
  2. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.00
    0.003300683 = product of:
      0.019804098 = sum of:
        0.019804098 = product of:
          0.039608195 = sum of:
            0.039608195 = weight(_text_:etc in 4515) [ClassicSimilarity], result of:
              0.039608195 = score(doc=4515,freq=2.0), product of:
                0.18910104 = queryWeight, product of:
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.03491209 = queryNorm
                0.20945519 = fieldWeight in 4515, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4515)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. This book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies. This title combines aspects of knowledge representation for both the Semantic Web (ontologies) and the Web 2.0 (folksonomies). Currently there is no monographic book which provides a combined overview over these topics. focus on the topic of using knowledge representation methods for document indexing purposes. For this purpose, considerations from classical librarian interests in knowledge representation (thesauri, classification schemes etc.) are included, which are not part of most other books which have a stronger background in computer science.
  3. Fensel, D.: Ontologies : a silver bullet for knowledge management and electronic commerce (2004) 0.00
    0.0027872422 = product of:
      0.016723452 = sum of:
        0.016723452 = product of:
          0.033446904 = sum of:
            0.033446904 = weight(_text_:22 in 1949) [ClassicSimilarity], result of:
              0.033446904 = score(doc=1949,freq=4.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.27358043 = fieldWeight in 1949, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1949)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Classification
    004.67/8 22
    DDC
    004.67/8 22
  4. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.00
    0.0023650532 = product of:
      0.014190319 = sum of:
        0.014190319 = product of:
          0.028380638 = sum of:
            0.028380638 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.028380638 = score(doc=987,freq=2.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    23. 7.2017 13:49:22
  5. Keyser, P. de: Indexing : from thesauri to the Semantic Web (2012) 0.00
    0.0023650532 = product of:
      0.014190319 = sum of:
        0.014190319 = product of:
          0.028380638 = sum of:
            0.028380638 = weight(_text_:22 in 3197) [ClassicSimilarity], result of:
              0.028380638 = score(doc=3197,freq=2.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.23214069 = fieldWeight in 3197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3197)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    24. 8.2016 14:03:22
  6. Daconta, M.C.; Oberst, L.J.; Smith, K.T.: ¬The Semantic Web : A guide to the future of XML, Web services and knowledge management (2003) 0.00
    0.0015767021 = product of:
      0.009460213 = sum of:
        0.009460213 = product of:
          0.018920425 = sum of:
            0.018920425 = weight(_text_:22 in 320) [ClassicSimilarity], result of:
              0.018920425 = score(doc=320,freq=2.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.15476047 = fieldWeight in 320, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=320)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    22. 5.2007 10:37:38

Types