Search (27 results, page 1 of 2)

  • × author_ss:"Ingwersen, P."
  1. Ingwersen, P.; Wormell, I.: Modern indexing and retrieval techniques matching different types of information needs (1989) 0.03
    0.033224124 = product of:
      0.09967237 = sum of:
        0.09967237 = sum of:
          0.01657126 = weight(_text_:of in 7322) [ClassicSimilarity], result of:
            0.01657126 = score(doc=7322,freq=2.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.24188137 = fieldWeight in 7322, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.109375 = fieldNorm(doc=7322)
          0.08310111 = weight(_text_:22 in 7322) [ClassicSimilarity], result of:
            0.08310111 = score(doc=7322,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.5416616 = fieldWeight in 7322, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.109375 = fieldNorm(doc=7322)
      0.33333334 = coord(1/3)
    
    Source
    International forum on information and documentation. 14(1989), S.17-22
  2. Larsen, B.; Ingwersen, P.; Lund, B.: Data fusion according to the principle of polyrepresentation (2009) 0.01
    0.0142272515 = product of:
      0.042681754 = sum of:
        0.042681754 = sum of:
          0.018938582 = weight(_text_:of in 2752) [ClassicSimilarity], result of:
            0.018938582 = score(doc=2752,freq=32.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.27643585 = fieldWeight in 2752, product of:
                5.656854 = tf(freq=32.0), with freq of:
                  32.0 = termFreq=32.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.03125 = fieldNorm(doc=2752)
          0.023743173 = weight(_text_:22 in 2752) [ClassicSimilarity], result of:
            0.023743173 = score(doc=2752,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.15476047 = fieldWeight in 2752, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2752)
      0.33333334 = coord(1/3)
    
    Abstract
    We report data fusion experiments carried out on the four best-performing retrieval models from TREC 5. Three were conceptually/algorithmically very different from one another; one was algorithmically similar to one of the former. The objective of the test was to observe the performance of the 11 logical data fusion combinations compared to the performance of the four individual models and their intermediate fusions when following the principle of polyrepresentation. This principle is based on cognitive IR perspective (Ingwersen & Järvelin, 2005) and implies that each retrieval model is regarded as a representation of a unique interpretation of information retrieval (IR). It predicts that only fusions of very different, but equally good, IR models may outperform each constituent as well as their intermediate fusions. Two kinds of experiments were carried out. One tested restricted fusions, which entails that only the inner disjoint overlap documents between fused models are ranked. The second set of experiments was based on traditional data fusion methods. The experiments involved the 30 TREC 5 topics that contain more than 44 relevant documents. In all tests, the Borda and CombSUM scoring methods were used. Performance was measured by precision and recall, with document cutoff values (DCVs) at 100 and 15 documents, respectively. Results show that restricted fusions made of two, three, or four cognitively/algorithmically very different retrieval models perform significantly better than do the individual models at DCV100. At DCV15, however, the results of polyrepresentative fusion were less predictable. The traditional fusion method based on polyrepresentation principles demonstrates a clear picture of performance at both DCV levels and verifies the polyrepresentation predictions for data fusion in IR. Data fusion improves retrieval performance over their constituent IR models only if the models all are quite conceptually/algorithmically dissimilar and equally and well performing, in that order of importance.
    Date
    22. 3.2009 18:48:28
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.4, S.646-654
  3. Christensen, F.H.; Ingwersen, P.: Online citation analysis : a methodological approach (1996) 0.00
    0.0047346456 = product of:
      0.014203936 = sum of:
        0.014203936 = product of:
          0.028407872 = sum of:
            0.028407872 = weight(_text_:of in 6691) [ClassicSimilarity], result of:
              0.028407872 = score(doc=6691,freq=18.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.41465375 = fieldWeight in 6691, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6691)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Investigates the possibilities and limitations of online citation analysis. The Dialog online processing tools RANK, MAP and TARGET are used to perform analysis of citations to and from isolated sets of documents as well as to carry out diachrone journal analysis. Discusses the implications of this analysis on the journal impact factors of ISI journals. Suggests that by the combined application of RANK and TARGET, a hitherto overlooked possibility of the online analysis of bibliographic coupling and mapping of scientific fields has been revealed
  4. Ingwersen, P.; Willett, P.: ¬An introduction to algorithmic and cognitive approaches for information retrieval (1995) 0.00
    0.004463867 = product of:
      0.0133916 = sum of:
        0.0133916 = product of:
          0.0267832 = sum of:
            0.0267832 = weight(_text_:of in 4344) [ClassicSimilarity], result of:
              0.0267832 = score(doc=4344,freq=16.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.39093933 = fieldWeight in 4344, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4344)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper provides an over-view of 2, complementary approaches to the design and implementation of information retrieval systems. The first approach focuses on the algorithms and data structures that are needed to maximise the effectiveness and the efficiency of the searches that can be carried out on text databases, while the second adopts a cognitive approach that focuses on the role of the user and of the knowledge sources involved in information retrieval. The paper argues for an holistic view of information retrieval that is capable of encompassing both of these approaches
  5. Borlund, P.; Ingwersen, P.: ¬The development of a method for the evaluation of interactive information retrieval systems (1997) 0.00
    0.00436691 = product of:
      0.01310073 = sum of:
        0.01310073 = product of:
          0.02620146 = sum of:
            0.02620146 = weight(_text_:of in 7469) [ClassicSimilarity], result of:
              0.02620146 = score(doc=7469,freq=20.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.38244802 = fieldWeight in 7469, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7469)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Describes the development of a methods for the evaluation and comparison of interactive information retrieval systems. The method is based on the introduction of the concept of a 'simulated work task situation' or scenario and the involvement of real end users as test persons. The relevance assessments are made with reference to the concepts of situational as well as topic relevance, assessed in a non binary way and calculated as precision. The method is further based on a mixture of simulated and real information needs, and involves also assessments made by individual panel memebers
    Source
    Journal of documentation. 53(1997) no.3, S.225-250
  6. Ingwersen, P.: Cognitive perspectives of information retrieval interaction : elements of a cognitive IR theory (1996) 0.00
    0.0042995503 = product of:
      0.012898651 = sum of:
        0.012898651 = product of:
          0.025797302 = sum of:
            0.025797302 = weight(_text_:of in 3616) [ClassicSimilarity], result of:
              0.025797302 = score(doc=3616,freq=38.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.37654874 = fieldWeight in 3616, product of:
                  6.164414 = tf(freq=38.0), with freq of:
                    38.0 = termFreq=38.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3616)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The objective of this paper is to amalgamate theories of text retrieval from various research traditions into a cognitive theory for information retrieval interaction. Set in a cognitive framework, the paper outlines the concept of polyrepresentation applied to both the user's cognitive space and the information space of IR systems. The concept seeks to represent the current user's information need, problem state, and domain work task or interest in a structure of causality. Further, it implies that we should apply different methods of representation and a variety of IR techniques of different cognitive and functional origin simultaneously to each semantic full-text entity in the information space. The cognitive differences imply that by applying cognitive overlaps of information objects, originating from different interprestations of such objects through time and by type, the degree of uncertainty inherent in IR is decreased. ... The lack of consistency among authors, indexers, evaluators or users is of an identical cognitive nature. It is unavoidable, and indeed favourable to IR. In particular, for full-text retrieval, alternative semantic entities, including Salton 'et al.'s' 'passage retrieval', are proposed to replace the traditional document record as the basic retrieval entity. These empirically observed phenomena of inconsistency and of semantic entities and values associated with data interpretation support strongly a cognitive approach to IR and the logical use of olypresentation, cognitive overlaps, and both data fusion and data diffusion
    Source
    Journal of documentation. 52(1996) no.1, S.3-50
  7. Jepsen, E.T.; Seiden, P.; Ingwersen, P.; Björneborn, L.; Borlund, P.: Characteristics of scientific Web publications : preliminary data gathering and analysis (2004) 0.00
    0.004184875 = product of:
      0.012554625 = sum of:
        0.012554625 = product of:
          0.02510925 = sum of:
            0.02510925 = weight(_text_:of in 3091) [ClassicSimilarity], result of:
              0.02510925 = score(doc=3091,freq=36.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.36650562 = fieldWeight in 3091, product of:
                  6.0 = tf(freq=36.0), with freq of:
                    36.0 = termFreq=36.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3091)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Because of the increasing presence of scientific publications an the Web, combined with the existing difficulties in easily verifying and retrieving these publications, research an techniques and methods for retrieval of scientific Web publications is called for. In this article, we report an the initial steps taken toward the construction of a test collection of scientific Web publications within the subject domain of plant biology. The steps reported are those of data gathering and data analysis aiming at identifying characteristics of scientific Web publications. The data used in this article were generated based an specifically selected domain topics that are searched for in three publicly accessible search engines (Google, AlITheWeb, and AItaVista). A sample of the retrieved hits was analyzed with regard to how various publication attributes correlated with the scientific quality of the content and whether this information could be employed to harvest, filter, and rank Web publications. The attributes analyzed were inlinks, outlinks, bibliographic references, file format, language, search engine overlap, structural position (according to site structure), and the occurrence of various types of metadata. As could be expected, the ranked output differs between the three search engines. Apparently, this is caused by differences in ranking algorithms rather than the databases themselves. In fact, because scientific Web content in this subject domain receives few inlinks, both AItaVista and AlITheWeb retrieved a higher degree of accessible scientific content than Google. Because of the search engine cutoffs of accessible URLs, the feasibility of using search engine output for Web content analysis is also discussed.
    Source
    Journal of the American Society for Information Science and Technology. 55(2004) no.14, S.1239-1249
  8. Ingwersen, P.: Search procedures in the library : analysed from the cognitive point of view (1982) 0.00
    0.003743066 = product of:
      0.0112291975 = sum of:
        0.0112291975 = product of:
          0.022458395 = sum of:
            0.022458395 = weight(_text_:of in 2185) [ClassicSimilarity], result of:
              0.022458395 = score(doc=2185,freq=20.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.32781258 = fieldWeight in 2185, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2185)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Reports experimental results concerning user interaction with document organisation, user-librarian negotiation and the librarian's search process in public libraries. The focus of the investigations is on the cognitive aspects of information retrieval. Discusses the cognitive viewpoint on which the research is based, outlining applicable findings and theories within the fields of cognitive science and cognitive psychology. It is shown how the user's knowledge structure cope with the structures of the system. User needs seem often to be presented as a label which may create ambiguity problems. Functions of open and closed questions are investigated and certain behaviouristic factors discussed. Librarians prefer search activity before consideration of the presented problem. Without a user present the librarian's information retrieval process is determined by 3 search attitudes involving motives and expectations as to search routines and possibilities. Conceptual knowledge, previous search and working domain play important roles. The attitudes have consequences for the objectives concerning use of routines and for the use of search concepts
    Source
    Journal of documentation. 38(1982) no.3, S.165-191
  9. Ingwersen, P.: ¬The cognitive framework for information retrieval : a paradigmatic perspective (1996) 0.00
    0.003743066 = product of:
      0.0112291975 = sum of:
        0.0112291975 = product of:
          0.022458395 = sum of:
            0.022458395 = weight(_text_:of in 6114) [ClassicSimilarity], result of:
              0.022458395 = score(doc=6114,freq=20.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.32781258 = fieldWeight in 6114, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6114)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The paper presents the principles underlying the cognitive framework for Information Retrieval (IR). It introduces the concept of polyrepresentation applied simultaneously to the user's cognitive space and the information space of IR systems. The concept seeks to represent the current user's information need, problem state, and domain work task or interest in a structure of causality. Further, it suggests to apply different methods of representation and a variety of IR techniques of 'different cognitive and functional origin' simultaneously to each information object in the information space. The cognitive differences between such representations imply that by applying 'cognitive retrieval overlaps' of information objects, originating from different interpretations of such objects over time and by type, the degree of uncertainty inherent in IR is decreased and the intellectual access possibilities are increased. One consequence of the framework is its capability to elucidate the seemingly dubious assumptions underlying the predominant algorithmic retrieval models, such as, the vector space and probabilistic models
  10. Ingwersen, P.: ¬The human approach to information science and management : the framework and prospects underlying the new Danish MSc programme (1994) 0.00
    0.0035509837 = product of:
      0.010652951 = sum of:
        0.010652951 = product of:
          0.021305902 = sum of:
            0.021305902 = weight(_text_:of in 5349) [ClassicSimilarity], result of:
              0.021305902 = score(doc=5349,freq=18.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.3109903 = fieldWeight in 5349, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5349)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper analyzes the conceptual background of the two-year MSC programme in Information Science and Management offered by the Royal School of Librarianship, Denmark, on top of the traditional course in Librarianship. The present state of library and information science (LIS) education is briefly analysed. Within this context, the programme structure and contents are outlined. The conception of information science which forms the background and framework for the programme structure is analysed and discussed. This conception of LIS emphasises a more profound human-driven approach to the domains of the discipline, and views information, technology, people, and the management aspects involved from a global perspective. The anticipated epistemological consequences of the human dimension are challenged. The major experiences gained from developing the Master's programme are analysed and the current syllabus described
    Source
    Journal of information science. 20(1994) no.3, S.197-208
  11. Ingwersen, P.: ¬The cognitive perspective in information retrieval (1994) 0.00
    0.0035289964 = product of:
      0.010586989 = sum of:
        0.010586989 = product of:
          0.021173978 = sum of:
            0.021173978 = weight(_text_:of in 2127) [ClassicSimilarity], result of:
              0.021173978 = score(doc=2127,freq=10.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.3090647 = fieldWeight in 2127, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2127)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Outlines the principles underlying the theory of polyrepresentation applied to the user's cognitive space and the information space of information retrieval systems, set in a cognitive framework. Uses polyrepresentation to represent the current user's information needs, problem states, and domain work tasks or interests in a structure of causality, as well as to embody semantic full text entities by means of the principle of 'intentional redundancy'
  12. Ingwersen, P.: ¬The calculation of Web impact factors (1998) 0.00
    0.003382594 = product of:
      0.010147782 = sum of:
        0.010147782 = product of:
          0.020295564 = sum of:
            0.020295564 = weight(_text_:of in 1071) [ClassicSimilarity], result of:
              0.020295564 = score(doc=1071,freq=12.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.29624295 = fieldWeight in 1071, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1071)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Reports investigations into the feasibility and reliability of calculating impact factors for web sites, called Web Impact Factors (Web-IF). analyzes a selection of 7 small and medium scale national and 4 large web domains as well as 6 institutional web sites over a series of snapshots taken of the web during a month. Describes the data isolation and calculation methods and discusses the tests. The results thus far demonstrate that Web-IFs are calculable with high confidence for national and sector domains whilst institutional Web-IFs should be approached with caution
    Source
    Journal of documentation. 54(1998) no.2, S.236-243
  13. Almind, T.C.; Ingwersen, P.: Informetric analyses on the World Wide Web : methodological approaches to 'Webometrics' (1997) 0.00
    0.003382594 = product of:
      0.010147782 = sum of:
        0.010147782 = product of:
          0.020295564 = sum of:
            0.020295564 = weight(_text_:of in 4711) [ClassicSimilarity], result of:
              0.020295564 = score(doc=4711,freq=12.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.29624295 = fieldWeight in 4711, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4711)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Introduces the application of informetric methods to the WWW, called Webometrics. A case study, in which the Danish proportion of the WWW is compared to those of other Nordic countries, presents a workable methods for general informetrc analyses of the WWW. The methodological approach is comparable with common bibliometric analyses of the ISI databases. Among other results the analyses demonstrate that Denmark would seem to fail seriously behind the other Nordic countries with respect to visibility on the Net and compared to its position in scientific databases
    Source
    Journal of documentation. 53(1997) no.4, S.404-426
  14. Järvelin, K.; Ingwersen, P.: User-oriented and cognitive models of information retrieval (2009) 0.00
    0.003382594 = product of:
      0.010147782 = sum of:
        0.010147782 = product of:
          0.020295564 = sum of:
            0.020295564 = weight(_text_:of in 3901) [ClassicSimilarity], result of:
              0.020295564 = score(doc=3901,freq=12.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.29624295 = fieldWeight in 3901, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3901)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The domain of user-oriented and cognitive information retrieval (IR) is first discussed, followed by a discussion on the dimensions and types of models one may build for the domain. The focus of the present entry is on the models of user-oriented and cognitive IR, not on their empirical applications. Several models with different emphases on user-oriented and cognitive IR are presented-ranging from overall approaches and relevance models to procedural models, cognitive models, and task-based models. The present entry does not discuss empirical findings based on the models.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  15. Ingwersen, P.; Johansen, T.; Timmermann, P.: User-librarian negotiations and search procedures : a progress report (1980) 0.00
    0.0033478998 = product of:
      0.010043699 = sum of:
        0.010043699 = product of:
          0.020087399 = sum of:
            0.020087399 = weight(_text_:of in 8923) [ClassicSimilarity], result of:
              0.020087399 = score(doc=8923,freq=4.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.2932045 = fieldWeight in 8923, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.09375 = fieldNorm(doc=8923)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Theory and application of information research. Proc. of the 2nd Int. Research Forum on Information Science, 3.-6.8.1977, Copenhagen. Ed.: O. Harbo u. L. Kajberg
  16. Ingwersen, P.: ¬A cognitive view of three selected online search facilities (1984) 0.00
    0.0031564306 = product of:
      0.009469291 = sum of:
        0.009469291 = product of:
          0.018938582 = sum of:
            0.018938582 = weight(_text_:of in 3896) [ClassicSimilarity], result of:
              0.018938582 = score(doc=3896,freq=2.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.27643585 = fieldWeight in 3896, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.125 = fieldNorm(doc=3896)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  17. Ingwersen, P.: Psychological aspects of information retrieval (1984) 0.00
    0.0031564306 = product of:
      0.009469291 = sum of:
        0.009469291 = product of:
          0.018938582 = sum of:
            0.018938582 = weight(_text_:of in 5367) [ClassicSimilarity], result of:
              0.018938582 = score(doc=5367,freq=2.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.27643585 = fieldWeight in 5367, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.125 = fieldNorm(doc=5367)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  18. Ingwersen, P.: Information and information science (1995) 0.00
    0.0031564306 = product of:
      0.009469291 = sum of:
        0.009469291 = product of:
          0.018938582 = sum of:
            0.018938582 = weight(_text_:of in 1709) [ClassicSimilarity], result of:
              0.018938582 = score(doc=1709,freq=2.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.27643585 = fieldWeight in 1709, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.125 = fieldNorm(doc=1709)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Encyclopedia of library and information science. Vol.56, [=Suppl.19]
  19. Ingwersen, P.: Europe and information science (1997) 0.00
    0.0031564306 = product of:
      0.009469291 = sum of:
        0.009469291 = product of:
          0.018938582 = sum of:
            0.018938582 = weight(_text_:of in 960) [ClassicSimilarity], result of:
              0.018938582 = score(doc=960,freq=2.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.27643585 = fieldWeight in 960, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.125 = fieldNorm(doc=960)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Journal of the American Society for Information Science. 48(1997) no.12, S.1139-1141
  20. Ingwersen, P.: Cognitive analysis and the role of the intermediary in information retrieval (1986) 0.00
    0.0027618767 = product of:
      0.00828563 = sum of:
        0.00828563 = product of:
          0.01657126 = sum of:
            0.01657126 = weight(_text_:of in 344) [ClassicSimilarity], result of:
              0.01657126 = score(doc=344,freq=2.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.24188137 = fieldWeight in 344, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.109375 = fieldNorm(doc=344)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)