Search (11 results, page 1 of 1)

  • × classification_ss:"BCA (FH K)"
  1. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.02
    0.01597191 = product of:
      0.047915727 = sum of:
        0.047915727 = sum of:
          0.01230097 = weight(_text_:of in 987) [ClassicSimilarity], result of:
            0.01230097 = score(doc=987,freq=6.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.17955035 = fieldWeight in 987, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.046875 = fieldNorm(doc=987)
          0.03561476 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
            0.03561476 = score(doc=987,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.23214069 = fieldWeight in 987, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=987)
      0.33333334 = coord(1/3)
    
    Abstract
    This book covers the basics of semantic web technologies and indexing languages, and describes their contribution to improve languages as a tool for subject queries and knowledge exploration. The book is relevant to information scientists, knowledge workers and indexers. It provides a suitable combination of theoretical foundations and practical applications.
    Content
    Introduction: envisioning semantic information spacesIndexing and knowledge organization -- Semantic technologies for knowledge representation -- Information retrieval and knowledge exploration -- Approaches to handle heterogeneity -- Problems with establishing semantic interoperability -- Formalization in indexing languages -- Typification of semantic relations -- Inferences in retrieval processes -- Semantic interoperability and inferences -- Remaining research questions.
    Date
    23. 7.2017 13:49:22
  2. Lalmas, M.: XML retrieval (2009) 0.00
    0.0034169364 = product of:
      0.010250809 = sum of:
        0.010250809 = product of:
          0.020501617 = sum of:
            0.020501617 = weight(_text_:of in 4998) [ClassicSimilarity], result of:
              0.020501617 = score(doc=4998,freq=24.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.2992506 = fieldWeight in 4998, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4998)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Documents usually have a content and a structure. The content refers to the text of the document, whereas the structure refers to how a document is logically organized. An increasingly common way to encode the structure is through the use of a mark-up language. Nowadays, the most widely used mark-up language for representing structure is the eXtensible Mark-up Language (XML). XML can be used to provide a focused access to documents, i.e. returning XML elements, such as sections and paragraphs, instead of whole documents in response to a query. Such focused strategies are of particular benefit for information repositories containing long documents, or documents covering a wide variety of topics, where users are directed to the most relevant content within a document. The increased adoption of XML to represent a document structure requires the development of tools to effectively access documents marked-up in XML. This book provides a detailed description of query languages, indexing strategies, ranking algorithms, presentation scenarios developed to access XML documents. Major advances in XML retrieval were seen from 2002 as a result of INEX, the Initiative for Evaluation of XML Retrieval. INEX, also described in this book, provided test sets for evaluating XML retrieval effectiveness. Many of the developments and results described in this book were investigated within INEX.
    Content
    Table of Contents: Introduction / Basic XML Concepts / Historical Perspectives / Query Languages / Indexing Strategies / Ranking Strategies / Presentation Strategies / Evaluating XML Retrieval Effectiveness / Conclusions
  3. Blair, D.C.: Language and representation in information retrieval (1991) 0.00
    0.0027335489 = product of:
      0.008200646 = sum of:
        0.008200646 = product of:
          0.016401293 = sum of:
            0.016401293 = weight(_text_:of in 1545) [ClassicSimilarity], result of:
              0.016401293 = score(doc=1545,freq=24.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.23940048 = fieldWeight in 1545, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1545)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Information or Document Retrieval is the subject of this book. It is not an introductory book, although it is self-contained in the sense that it is not necessary to have a background in the theory or practice of Information Retrieval in order to understand its arguments. The book presents, as clearly as possible, one particular perspective on Information Retrieval, and attempts to say that certain aspects of the theory or practice of the management of documents are more important than others. The majority of Information Retrieval research has been aimed at the more experimentally tractable small-scale systems, and although much of that work has added greatly to our understanding of Information Retrieval it is becoming increasingly apparent that retrieval systems with large data bases of documents are a fundamentally different genre of systems than small-scale systems. If this is so, which is the thesis of this book, then we must now study large information retrieval systems with the same rigor and intensity that we once studied small-scale systems. Hegel observed that the quantitative growth of any system caused qualitative changes to take place in its structure and processes.
  4. Innovations in information retrieval : perspectives for theory and practice (2011) 0.00
    0.0026171738 = product of:
      0.0078515215 = sum of:
        0.0078515215 = product of:
          0.015703043 = sum of:
            0.015703043 = weight(_text_:of in 1757) [ClassicSimilarity], result of:
              0.015703043 = score(doc=1757,freq=22.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.2292085 = fieldWeight in 1757, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1757)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The advent of new information retrieval (IR) technologies and approaches to storage and retrieval provide communities with previously unheard of opportunities for mass documentation, digitization, and the recording of information in all its forms. This book introduces and contextualizes these developments and looks at supporting research in IR, the debates, theories and issues. Contributed by an international team of experts, each authored chapter provides a snapshot of changes in the field, as well as the importance of developing innovation, creativity and thinking in IR practice and research. Key discussion areas include: browsing in new information environments classification revisited: a web of knowledge approaches to fiction retrieval research music information retrieval research folksonomies, social tagging and information retrieval digital information interaction as semantic navigation assessing web search machines: a webometric approach. The questions raised are of significance to the whole international library and information science community, and this is essential reading for LIS professionals , researchers and students, and for all those interested in the future of IR.
    Content
    Inhalt: Bawden, D.: Encountering on the road to serendip? Browsing in new information environments. - Slavic, A.: Classification revisited: a web of knowledge. - Vernitski, A. u. P. Rafferty: Approaches to fiction retrieval research, from theory to practice? - Inskip, C.: Music information retrieval research. - Peters, I.: Folksonomies, social tagging and information retrieval. - Kopak, R., L. Freund u. H. O'Brien: Digital information interaction as semantic navigation. - Thelwall, M.: Assessing web search engines: a webometric approach
    Footnote
    Rez. in: Mitt VÖB 64(2911) H.3/4, S.547-553 (O. Oberhauser): "Dieser mit 156 Seiten (inklusive Register) relativ schmale Band enthält sieben mit dem Gütesiegel "peer-reviewed" versehene Beiträge namhafter Autoren zu "research fronts" auf dem Gebiet des Information Retrieval (IR) - ein Begriff, der hier durchaus breit verstanden wird. Wie die Herausgeber Allen Foster und Pauline Rafferty - beide aus dem Department of Information Studies an der Aberystwyth University (Wales) - in ihrer Einleitung betonen, sind Theorie und Praxis der Wissensorganisation im Internet- Zeitalter nicht mehr nur die Domäne von Informationswissenschaftlern und Bibliotheksfachleuten, sondern auch von Informatikern, Semantic-Web-Entwicklern und Wissensmanagern aus den verschiedensten Institutionen; neben das wissenschaftliche Interesse am Objektbereich ist nun auch das kommerzielle getreten. Die Verarbeitung von Massendaten, die Beschäftigung mit komplexen Medien und die Erforschung der Möglichkeiten zur Einbeziehung der Rezipienten sind insbesondere die Aspekte, um die es heute geht. ..." Weitere Rez. in: Library review 61(2012) no.3, S.233-235 (G. Macgregor); J. Doc. 69(2013) no.2, S.320-321 (J. Bates)
  5. ¬The discipline of organizing (2013) 0.00
    0.0024953773 = product of:
      0.007486132 = sum of:
        0.007486132 = product of:
          0.014972264 = sum of:
            0.014972264 = weight(_text_:of in 2172) [ClassicSimilarity], result of:
              0.014972264 = score(doc=2172,freq=20.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.21854173 = fieldWeight in 2172, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2172)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Organizing is such a common activity that we often do it without thinking much about it. In our daily lives we organize physical things--books on shelves, cutlery in kitchen drawers--and digital things--Web pages, MP3 files, scientific datasets. Millions of people create and browse Web sites, blog, tag, tweet, and upload and download content of all media types without thinking "I'm organizing now" or "I'm retrieving now." This book offers a framework for the theory and practice of organizing that integrates information organization (IO) and information retrieval (IR), bridging the disciplinary chasms between Library and Information Science and Computer Science, each of which views and teaches IO and IR as separate topics and in substantially different ways. It introduces the unifying concept of an Organizing System--an intentionally arranged collection of resources and the interactions they support--and then explains the key concepts and challenges in the design and deployment of Organizing Systems in many domains, including libraries, museums, business information systems, personal information management, and social computing. Intended for classroom use or as a professional reference, the book covers the activities common to all organizing systems: identifying resources to be organized; organizing resources by describing and classifying them; designing resource-based interactions; and maintaining resources and organization over time. The book is extensively annotated with disciplinary-specific notes to ground it with relevant concepts and references of library science, computing, cognitive science, law, and business.
    Content
    Foundations for Organizing Systems -- Activities in Organizing Systems -- Resources in Organizing Systems -- Resource Description and Metadata -- Describing Relationships and Structures -- Categorization: Describing Resource Classes and Types -- Classification: Assigning Resources to Categories -- The Forms of Resource Descriptions -- Interactions with Resources -- A Roadmap for Organizing Systems.
  6. Hars, A.: From publishing to knowledge networks : reinventing online knowledge infrastructures (2003) 0.00
    0.0024161388 = product of:
      0.007248416 = sum of:
        0.007248416 = product of:
          0.014496832 = sum of:
            0.014496832 = weight(_text_:of in 1634) [ClassicSimilarity], result of:
              0.014496832 = score(doc=1634,freq=12.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.21160212 = fieldWeight in 1634, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1634)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Today's publishing infrastructure is rapidly changing. As electronic journals, digital libraries, collaboratories, logic servers, and other knowledge infrastructures emerge an the internet, the key aspects of this transformation need to be identified. Knowledge is becoming increasingly dynamic and integrated. Instead of writing self-contained articles, authors are turning to the new practice of embedding their findings into dynamic networks of knowledge. Here, the author details the implications that this transformation is having an the creation, dissemination and organization of academic knowledge. The author Shows that many established publishing principles need to be given up in order to facilitate this transformation. The text provides valuable insights for knowledge managers, designers of internet-based knowledge infrastructures, and professionals in the publishing industry. Researchers will find the scenarios and implications for research processes stimulating and thought-provoking.
  7. White, R.W.; Roth, R.A.: Exploratory search : beyond the query-response paradigm (2009) 0.00
    0.0024161388 = product of:
      0.007248416 = sum of:
        0.007248416 = product of:
          0.014496832 = sum of:
            0.014496832 = weight(_text_:of in 0) [ClassicSimilarity], result of:
              0.014496832 = score(doc=0,freq=12.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.21160212 = fieldWeight in 0, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=0)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    As information becomes more ubiquitous and the demands that searchers have on search systems grow, there is a need to support search behaviors beyond simple lookup. Information seeking is the process or activity of attempting to obtain information in both human and technological contexts. Exploratory search describes an information-seeking problem context that is open-ended, persistent, and multifaceted, and information-seeking processes that are opportunistic, iterative, and multitactical. Exploratory searchers aim to solve complex problems and develop enhanced mental capacities. Exploratory search systems support this through symbiotic human-machine relationships that provide guidance in exploring unfamiliar information landscapes. Exploratory search has gained prominence in recent years. There is an increased interest from the information retrieval, information science, and human-computer interaction communities in moving beyond the traditional turn-taking interaction model supported by major Web search engines, and toward support for human intelligence amplification and information use. In this lecture, we introduce exploratory search, relate it to relevant extant research, outline the features of exploratory search systems, discuss the evaluation of these systems, and suggest some future directions for supporting exploratory search. Exploratory search is a new frontier in the search domain and is becoming increasingly important in shaping our future world.
    Content
    Table of Contents: Introduction / Defining Exploratory Search / Related Work / Features of Exploratory Search Systems / Evaluation of Exploratory Search Systems / Future Directions and concluding Remarks
  8. Tunkelang, D.: Faceted search (2009) 0.00
    0.0020877826 = product of:
      0.0062633473 = sum of:
        0.0062633473 = product of:
          0.012526695 = sum of:
            0.012526695 = weight(_text_:of in 26) [ClassicSimilarity], result of:
              0.012526695 = score(doc=26,freq=14.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.18284513 = fieldWeight in 26, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.03125 = fieldNorm(doc=26)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    We live in an information age that requires us, more than ever, to represent, access, and use information. Over the last several decades, we have developed a modern science and technology for information retrieval, relentlessly pursuing the vision of a "memex" that Vannevar Bush proposed in his seminal article, "As We May Think." Faceted search plays a key role in this program. Faceted search addresses weaknesses of conventional search approaches and has emerged as a foundation for interactive information retrieval. User studies demonstrate that faceted search provides more effective information-seeking support to users than best-first search. Indeed, faceted search has become increasingly prevalent in online information access systems, particularly for e-commerce and site search. In this lecture, we explore the history, theory, and practice of faceted search. Although we cannot hope to be exhaustive, our aim is to provide sufficient depth and breadth to offer a useful resource to both researchers and practitioners. Because faceted search is an area of interest to computer scientists, information scientists, interface designers, and usability researchers, we do not assume that the reader is a specialist in any of these fields. Rather, we offer a self-contained treatment of the topic, with an extensive bibliography for those who would like to pursue particular aspects in more depth.
    Content
    Table of Contents: I. Key Concepts / Introduction: What Are Facets? / Information Retrieval / Faceted Information Retrieval / II. Research and Practice / Academic Research / Commercial Applications / III. Practical Concerns / Back-End Concerns / Front-End Concerns / Conclusion / Glossary
  9. Meadow, C.T.: Text information retrieval systems (1992) 0.00
    0.001972769 = product of:
      0.0059183068 = sum of:
        0.0059183068 = product of:
          0.0118366135 = sum of:
            0.0118366135 = weight(_text_:of in 1519) [ClassicSimilarity], result of:
              0.0118366135 = score(doc=1519,freq=8.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.17277241 = fieldWeight in 1519, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1519)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This book's purpose is to teach people who will be searching or designing text retrieval systems how the systems work. For designers, it covers problems they will face and reviews currently available solutions to provide a basis for more advanced study. For the searcher its purpose is to describe why such systems work as they do. Text Information Retrieval Systems, Second Edition is primarily about computer-based retrieval systems, but the principles apply to non-mechanized ones as well. - Winner of the ASIS Best Information Science Book Award 2000!
    COMPASS
    Information retrieval / Use of / On-line computers
    Footnote
    Rez. in: Library quarterly 63(1993) no.1, S.106-108 (H.D. White); Journal of academic librarianship 19(1993) no.2, S.120 (H.D. White)
    Subject
    Information retrieval / Use of / On-line computers
  10. Chu, H.: Information representation and retrieval in the digital age (2010) 0.00
    0.0016739499 = product of:
      0.0050218496 = sum of:
        0.0050218496 = product of:
          0.010043699 = sum of:
            0.010043699 = weight(_text_:of in 92) [ClassicSimilarity], result of:
              0.010043699 = score(doc=92,freq=36.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.14660224 = fieldWeight in 92, product of:
                  6.0 = tf(freq=36.0), with freq of:
                    36.0 = termFreq=36.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.015625 = fieldNorm(doc=92)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    Information representation and retrieval : an overview -- Information representation I : basic approaches -- Information representation II : related topics -- Language in information representation and retrieval -- Retrieval techniques and query representation -- Retrieval approaches -- Information retrieval models -- Information retrieval systems -- Retrieval of information unique in content or format -- The user dimension in information representation and retrieval -- Evaluation of information representation and retrieval -- Artificial intelligence in information representation and retrieval.
    Footnote
    Rez. in: JASIST 56(2005) no.2, S.215-216 (A. Heath): "What is small, thoroughly organized, and easy to understand? Well, it's Heting Chu's latest book an information retrieval. A very welcome release, this small literary addition to the field (only 248 pages) contains a concise and weIl-organized discussion of every major topic in information retrieval. The often-complex field of information retrieval is presented from its origin in the early 1950s to the present day. The organization of this text is top-notch, thus making this an easy read for even the novice. Unlike other titles in this area, Chu's user-friendly style of writing is done an purpose to properly introduce newcomers to the field in a less intimidating way. As stated by the author in the Preface, the purpose of the book is to "present a systematic, thorough yet nontechnical view of the field by using plain language to explain complex subjects." Chu has definitely struck up the right combination of ingredients. In a field so broad and complex, a well-organized presentation of topics that don't trip an themselves is essential. The use of plain language where possible is also a good choice for this topic because it allows one to absorb topics that are, by nature, not as easy to grasp. For instance, Chapters 6 and 7, which cover retrieval approaches and techniques, an often painstaking topic for many students and teachers is deftly handled with the use of tables that can be used to compare and contrast the various models discussed. I particularly loved Chu's use of Koll's 2000 article from the Bulletin of the American Society for Information Science to explain subject searching at the beginning of Chapter 6, which discusses the differences between browsing and searching. The Koll article uses the task of finding a needle in a haystack as an analogy.
    Chu's intent with this book is clear throughout the entire text. With this presentation, she writes with the novice in mind or as she puls it in the Preface, "to anyone who is interested in learning about the field, particularly those who are new to it." After reading the text, I found that this book is also an appropriate reference book for those who are somewhat advanced in the field. I found the chapters an information retrieval models and techniques, metadata, and AI very informative in that they contain information that is often rather densely presented in other texts. Although, I must say, the metadata section in Chapter 3 is pretty basic and contains more questions about the area than information. . . . It is an excellent book to have in the classroom, an your bookshelf, etc. It reads very well and is written with the reader in mind. If you are in need of a more advanced or technical text an the subject, this is not the book for you. But, if you are looking for a comprehensive, manual that can be used as a "flip-through," then you are in luck."
    Weitere Rez. in: Rez. in: nfd 55(2004) H.4, S.252 (D. Lewandowski):"Die Zahl der Bücher zum Thema Information Retrieval ist nicht gering, auch in deutscher Sprache liegen einige Titel vor. Trotzdem soll ein neues (englischsprachiges) Buch zu diesem Thema hier besprochen werden. Dieses zeichnet sich durch eine Kürze (nur etwa 230 Seiten Text) und seine gute Verständlichkeit aus und richtet sich damit bevorzugt an Studenten in den ersten Semestern. Heting Chu unterrichtet seit 1994 an Palmer School of Library and Information Science der Long Island University New York. Dass die Autorin viel Erfahrung in der Vermittlung des Stoffs in ihren Information-Retrieval-Veranstaltungen sammeln konnte, merkt man dem Buch deutlich an. Es ist einer klaren und verständlichen Sprache geschrieben und führt in die Grundlagen der Wissensrepräsentation und des Information Retrieval ein. Das Lehrbuch behandelt diese Themen als Gesamtkomplex und geht damit über den Themenbereich ähnlicher Bücher hinaus, die sich in der Regel auf das Retrieval beschränken. Das Buch ist in zwölf Kapitel gegliedert, wobei das erste Kapitel eine Übersicht über die zu behandelnden Themen gibt und den Leser auf einfache Weise in die Grundbegriffe und die Geschichte des IRR einführt. Neben einer kurzen chronologischen Darstellung der Entwicklung der IRR-Systeme werden auch vier Pioniere des Gebiets gewürdigt: Mortimer Taube, Hans Peter Luhn, Calvin N. Mooers und Gerard Salton. Dies verleiht dem von Studenten doch manchmal als trocken empfundenen Stoff eine menschliche Dimension. Das zweite und dritte Kapitel widmen sich der Wissensrepräsentation, wobei zuerst die grundlegenden Ansätze wie Indexierung, Klassifikation und Abstracting besprochen werden. Darauf folgt die Behandlung von Wissensrepräsentation mittels Metadaten, wobei v.a. neuere Ansätze wie Dublin Core und RDF behandelt werden. Weitere Unterkapitel widmen sich der Repräsentation von Volltexten und von Multimedia-Informationen. Die Stellung der Sprache im IRR wird in einem eigenen Kapitel behandelt. Dabei werden in knapper Form verschiedene Formen des kontrollierten Vokabulars und die wesentlichen Unterscheidungsmerkmale zur natürlichen Sprache erläutert. Die Eignung der beiden Repräsentationsmöglichkeiten für unterschiedliche IRR-Zwecke wird unter verschiedenen Aspekten diskutiert.
  11. Grossman, D.A.; Frieder, O.: Information retrieval : algorithms and heuristics (2004) 0.00
    0.0015782153 = product of:
      0.0047346456 = sum of:
        0.0047346456 = product of:
          0.009469291 = sum of:
            0.009469291 = weight(_text_:of in 1486) [ClassicSimilarity], result of:
              0.009469291 = score(doc=1486,freq=8.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.13821793 = fieldWeight in 1486, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1486)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Interested in how an efficient search engine works? Want to know what algorithms are used to rank resulting documents in response to user requests? The authors answer these and other key information on retrieval design and implementation questions is provided. This book is not yet another high level text. Instead, algorithms are thoroughly described, making this book ideally suited for both computer science students and practitioners who work on search-related applications. As stated in the foreword, this book provides a current, broad, and detailed overview of the field and is the only one that does so. Examples are used throughout to illustrate the algorithms. The authors explain how a query is ranked against a document collection using either a single or a combination of retrieval strategies, and how an assortment of utilities are integrated into the query processing scheme to improve these rankings. Methods for building and compressing text indexes, querying and retrieving documents in multiple languages, and using parallel or distributed processing to expedite the search are likewise described. This edition is a major expansion of the one published in 1998. Neuaufl. 2005: Besides updating the entire book with current techniques, it includes new sections on language models, cross-language information retrieval, peer-to-peer processing, XML search, mediators, and duplicate document detection.

Types

Classifications