Search (141 results, page 1 of 8)

  • × theme_ss:"Informetrie"
  • × theme_ss:"Citation indexing"
  1. Hellqvist, B.: Referencing in the humanities and its implications for citation analysis (2010) 0.12
    0.11675325 = product of:
      0.17512988 = sum of:
        0.16416901 = weight(_text_:sociology in 3329) [ClassicSimilarity], result of:
          0.16416901 = score(doc=3329,freq=2.0), product of:
            0.30495512 = queryWeight, product of:
              6.9606886 = idf(docFreq=113, maxDocs=44218)
              0.043811057 = queryNorm
            0.53833824 = fieldWeight in 3329, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.9606886 = idf(docFreq=113, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3329)
        0.010960858 = product of:
          0.021921717 = sum of:
            0.021921717 = weight(_text_:of in 3329) [ClassicSimilarity], result of:
              0.021921717 = score(doc=3329,freq=14.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.31997898 = fieldWeight in 3329, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3329)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article studies citation practices in the arts and humanities from a theoretical and conceptual viewpoint, drawing on studies from fields like linguistics, history, library & information science, and the sociology of science. The use of references in the humanities is discussed in connection with the growing interest in the possibilities of applying citation analysis to humanistic disciplines. The study shows how the use of references within the humanities is connected to concepts of originality, to intellectual organization, and to searching and writing. Finally, it is acknowledged that the use of references is connected to stylistic, epistemological, and organizational differences, and these differences must be taken into account when applying citation analysis to humanistic disciplines.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.2, S.310-318
  2. Kousha, K.; Thelwall, M.: Google Scholar citations and Google Web/URL citations : a multi-discipline exploratory analysis (2007) 0.08
    0.08258697 = product of:
      0.123880446 = sum of:
        0.11726358 = weight(_text_:sociology in 337) [ClassicSimilarity], result of:
          0.11726358 = score(doc=337,freq=2.0), product of:
            0.30495512 = queryWeight, product of:
              6.9606886 = idf(docFreq=113, maxDocs=44218)
              0.043811057 = queryNorm
            0.38452733 = fieldWeight in 337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.9606886 = idf(docFreq=113, maxDocs=44218)
              0.0390625 = fieldNorm(doc=337)
        0.006616868 = product of:
          0.013233736 = sum of:
            0.013233736 = weight(_text_:of in 337) [ClassicSimilarity], result of:
              0.013233736 = score(doc=337,freq=10.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.19316542 = fieldWeight in 337, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=337)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    We use a new data gathering method, "Web/URL citation," Web/URL and Google Scholar to compare traditional and Web-based citation patterns across multiple disciplines (biology, chemistry, physics, computing, sociology, economics, psychology, and education) based upon a sample of 1,650 articles from 108 open access (OA) journals published in 2001. A Web/URL citation of an online journal article is a Web mention of its title, URL, or both. For each discipline, except psychology, we found significant correlations between Thomson Scientific (formerly Thomson ISI, here: ISI) citations and both Google Scholar and Google Web/URL citations. Google Scholar citations correlated more highly with ISI citations than did Google Web/URL citations, indicating that the Web/URL method measures a broader type of citation phenomenon. Google Scholar citations were more numerous than ISI citations in computer science and the four social science disciplines, suggesting that Google Scholar is more comprehensive for social sciences and perhaps also when conference articles are valued and published online. We also found large disciplinary differences in the percentage overlap between ISI and Google Scholar citation sources. Finally, although we found many significant trends, there were also numerous exceptions, suggesting that replacing traditional citation sources with the Web or Google Scholar for research impact calculations would be problematic.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.7, S.1055-1065
  3. Chen, C.: Mapping scientific frontiers : the quest for knowledge visualization (2003) 0.07
    0.070587926 = product of:
      0.105881885 = sum of:
        0.093810864 = weight(_text_:sociology in 2213) [ClassicSimilarity], result of:
          0.093810864 = score(doc=2213,freq=2.0), product of:
            0.30495512 = queryWeight, product of:
              6.9606886 = idf(docFreq=113, maxDocs=44218)
              0.043811057 = queryNorm
            0.30762187 = fieldWeight in 2213, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.9606886 = idf(docFreq=113, maxDocs=44218)
              0.03125 = fieldNorm(doc=2213)
        0.012071025 = product of:
          0.02414205 = sum of:
            0.02414205 = weight(_text_:of in 2213) [ClassicSimilarity], result of:
              0.02414205 = score(doc=2213,freq=52.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.35238793 = fieldWeight in 2213, product of:
                  7.2111025 = tf(freq=52.0), with freq of:
                    52.0 = termFreq=52.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2213)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Footnote
    Rez. in: JASIST 55(2004) no.4, S.363-365 (J.W. Schneider): "Theories and methods for mapping scientific frontiers have existed for decades-especially within quantitative studies of science. This book investigates mapping scientific frontiers from the perspective of visual thinking and visual exploration (visual communication). The central theme is construction of visual-spatial representations that may convey insights into the dynamic structure of scientific frontiers. The author's previous book, Information Visualisation and Virtual Environments (1999), also concerns some of the ideas behind and possible benefits of visual communication. This new book takes a special focus an knowledge visualization, particularly in relation to science literature. The book is not a technical tutorial as the focus is an principles of visual communication and ways that may reveal the dynamics of scientific frontiers. The new approach to science mapping presented is the culmination of different approaches from several disciplines, such as philosophy of science, information retrieval, scientometrics, domain analysis, and information visualization. The book therefore addresses an audience with different disciplinary backgrounds and tries to stimulate interdisciplinary research. Chapter 1, The Growth of Scientific Knowledge, introduces a range of examples that illustrate fundamental issues concerning visual communication in general and science mapping in particular. Chapter 2, Mapping the Universe, focuses an the basic principles of cartography for visual communication. Chapter 3, Mapping the Mind, turns the attention inward and explores the design of mind maps, maps that represent our thoughts, experience, and knowledge. Chapter 4, Enabling Techniques for Science Mapping, essentially outlines the author's basic approach to science mapping.
    The title of Chapter 5, On the Shoulders of Giants, implies that knowledge of the structure of scientific frontiers in the immediate past holds the key to a fruitful exploration of people's intellectual assets. Chapter 6, Tracing Competing Paradigms explains how information visualization can draw upon the philosophical framework of paradigm shifts and thereby enable scientists to track the development of Competing paradigms. The final chapter, Tracking Latent Domain Knowledge, turns citation analysis upside down by looking at techniques that may reveal latent domain knowledge. Mapping Scientific Frontiers: The Quest for Knowledge Visualization is an excellent book and is highly recommended. The book convincingly outlines general theories conceming cartography, visual communication, and science mapping-especially how metaphors can make a "big picture"simple and useful. The author likewise Shows how the GSA framework is based not only an technical possibilities but indeed also an the visualization principles presented in the beginning chapters. Also, the author does a fine job of explaining why the mapping of scientific frontiers needs a combined effort from a diverse range of underlying disciplines, such as philosophy of science, sociology of science, scientometrics, domain analyses, information visualization, knowledge discovery, and data mining.
  4. Wouters, P.; Vries, R. de: Formally citing the Web (2004) 0.07
    0.06959857 = product of:
      0.104397856 = sum of:
        0.093810864 = weight(_text_:sociology in 3093) [ClassicSimilarity], result of:
          0.093810864 = score(doc=3093,freq=2.0), product of:
            0.30495512 = queryWeight, product of:
              6.9606886 = idf(docFreq=113, maxDocs=44218)
              0.043811057 = queryNorm
            0.30762187 = fieldWeight in 3093, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.9606886 = idf(docFreq=113, maxDocs=44218)
              0.03125 = fieldNorm(doc=3093)
        0.010586989 = product of:
          0.021173978 = sum of:
            0.021173978 = weight(_text_:of in 3093) [ClassicSimilarity], result of:
              0.021173978 = score(doc=3093,freq=40.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.3090647 = fieldWeight in 3093, product of:
                  6.3245554 = tf(freq=40.0), with freq of:
                    40.0 = termFreq=40.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3093)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    How do authors refer to Web-based information sources in their formal scientific publications? It is not yet weIl known how scientists and scholars actually include new types of information sources, available through the new media, in their published work. This article reports an a comparative study of the lists of references in 38 scientific journals in five different scientific and social scientific fields. The fields are sociology, library and information science, biochemistry and biotechnology, neuroscience, and the mathematics of computing. As is weIl known, references, citations, and hyperlinks play different roles in academic publishing and communication. Our study focuses an hyperlinks as attributes of references in formal scholarly publications. The study developed and applied a method to analyze the differential roles of publishing media in the analysis of scientific and scholarly literature references. The present secondary databases that include reference and citation data (the Web of Science) cannot be used for this type of research. By the automated processing and analysis of the full text of scientific and scholarly articles, we were able to extract the references and hyperlinks contained in these references in relation to other features of the scientific and scholarly literature. Our findings show that hyperlinking references are indeed, as expected, abundantly present in the formal literature. They also tend to cite more recent literature than the average reference. The large majority of the references are to Web instances of traditional scientific journals. Other types of Web-based information sources are less weIl represented in the lists of references, except in the case of pure e-journals. We conclude that this can be explained by taking the role of the publisher into account. Indeed, it seems that the shift from print-based to electronic publishing has created new roles for the publisher. By shaping the way scientific references are hyperlinking to other information sources, the publisher may have a large impact an the availability of scientific and scholarly information.
    Source
    Journal of the American Society for Information Science and Technology. 55(2004) no.14, S.1250-1260
  5. De Bellis, N.: Bibliometrics and citation analysis : from the Science citation index to cybermetrics (2008) 0.07
    0.06700444 = product of:
      0.10050666 = sum of:
        0.093810864 = weight(_text_:sociology in 3585) [ClassicSimilarity], result of:
          0.093810864 = score(doc=3585,freq=2.0), product of:
            0.30495512 = queryWeight, product of:
              6.9606886 = idf(docFreq=113, maxDocs=44218)
              0.043811057 = queryNorm
            0.30762187 = fieldWeight in 3585, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.9606886 = idf(docFreq=113, maxDocs=44218)
              0.03125 = fieldNorm(doc=3585)
        0.0066958 = product of:
          0.0133916 = sum of:
            0.0133916 = weight(_text_:of in 3585) [ClassicSimilarity], result of:
              0.0133916 = score(doc=3585,freq=16.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.19546966 = fieldWeight in 3585, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3585)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    Inhalt: Biblio/sciento/infor-metrics : terminological issues and early historical developments -- The empirical foundations of bibliometrics : the Science citation index -- The philosophical foundations of bibliometrics : Bernal, Merton, Price, Garfield, and Small -- The mathematical foundations of bibliometrics -- Maps and paradigms : bibliographic citations at the service of the history and sociology of science -- Impact factor and the evaluation of scientists : bibliographic citations at the service of science policy and management -- On the shoulders of dwarfs : citation as rhetorical device and the criticisms to the normative model -- Measuring scientific communication in the twentieth century : from bibliometrics to cybermetrics.
  6. Nicolaisen, J.: Citation analysis (2007) 0.04
    0.037970424 = product of:
      0.11391127 = sum of:
        0.11391127 = sum of:
          0.018938582 = weight(_text_:of in 6091) [ClassicSimilarity], result of:
            0.018938582 = score(doc=6091,freq=2.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.27643585 = fieldWeight in 6091, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.125 = fieldNorm(doc=6091)
          0.09497269 = weight(_text_:22 in 6091) [ClassicSimilarity], result of:
            0.09497269 = score(doc=6091,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.61904186 = fieldWeight in 6091, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.125 = fieldNorm(doc=6091)
      0.33333334 = coord(1/3)
    
    Date
    13. 7.2008 19:53:22
    Source
    Annual review of information science and technology. 41(2007), S.xxx-xxx
  7. Van der Veer Martens, B.: Do citation systems represent theories of truth? (2001) 0.03
    0.031927135 = product of:
      0.0957814 = sum of:
        0.0957814 = sum of:
          0.0118366135 = weight(_text_:of in 3925) [ClassicSimilarity], result of:
            0.0118366135 = score(doc=3925,freq=2.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.17277241 = fieldWeight in 3925, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.078125 = fieldNorm(doc=3925)
          0.08394479 = weight(_text_:22 in 3925) [ClassicSimilarity], result of:
            0.08394479 = score(doc=3925,freq=4.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.54716086 = fieldWeight in 3925, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.078125 = fieldNorm(doc=3925)
      0.33333334 = coord(1/3)
    
    Date
    22. 7.2006 15:22:28
  8. Larivière, V.; Gingras, Y.; Archambault, E.: ¬The decline in the concentration of citations, 1900-2007 (2009) 0.02
    0.024640482 = product of:
      0.07392144 = sum of:
        0.07392144 = sum of:
          0.023554565 = weight(_text_:of in 2763) [ClassicSimilarity], result of:
            0.023554565 = score(doc=2763,freq=22.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.34381276 = fieldWeight in 2763, product of:
                4.690416 = tf(freq=22.0), with freq of:
                  22.0 = termFreq=22.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.046875 = fieldNorm(doc=2763)
          0.05036688 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
            0.05036688 = score(doc=2763,freq=4.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.32829654 = fieldWeight in 2763, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2763)
      0.33333334 = coord(1/3)
    
    Abstract
    This article challenges recent research (Evans, 2008) reporting that the concentration of cited scientific literature increases with the online availability of articles and journals. Using Thomson Reuters' Web of Science, the present article analyses changes in the concentration of citations received (2- and 5-year citation windows) by papers published between 1900 and 2005. Three measures of concentration are used: the percentage of papers that received at least one citation (cited papers); the percentage of papers needed to account for 20%, 50%, and 80% of the citations; and the Herfindahl-Hirschman index (HHI). These measures are used for four broad disciplines: natural sciences and engineering, medical fields, social sciences, and the humanities. All these measures converge and show that, contrary to what was reported by Evans, the dispersion of citations is actually increasing.
    Date
    22. 3.2009 19:22:35
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.4, S.858-862
  9. Chan, H.C.; Kim, H.-W.; Tan, W.C.: Information systems citation patterns from International Conference on Information Systems articles (2006) 0.02
    0.018567387 = product of:
      0.055702157 = sum of:
        0.055702157 = sum of:
          0.020087399 = weight(_text_:of in 201) [ClassicSimilarity], result of:
            0.020087399 = score(doc=201,freq=16.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.2932045 = fieldWeight in 201, product of:
                4.0 = tf(freq=16.0), with freq of:
                  16.0 = termFreq=16.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.046875 = fieldNorm(doc=201)
          0.03561476 = weight(_text_:22 in 201) [ClassicSimilarity], result of:
            0.03561476 = score(doc=201,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.23214069 = fieldWeight in 201, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=201)
      0.33333334 = coord(1/3)
    
    Abstract
    Research patterns could enhance understanding of the Information Systems (IS) field. Citation analysis is the methodology commonly used to determine such research patterns. In this study, the citation methodology is applied to one of the top-ranked Information Systems conferences - International Conference on Information Systems (ICIS). Information is extracted from papers in the proceedings of ICIS 2000 to 2002. A total of 145 base articles and 4,226 citations are used. Research patterns are obtained using total citations, citations per journal or conference, and overlapping citations. We then provide the citation ranking of journals and conferences. We also examine the difference between the citation ranking in this study and the ranking of IS journals and IS conferences in other studies. Based on the comparison, we confirm that IS research is a multidisciplinary research area. We also identify the most cited papers and authors in the IS research area, and the organizations most active in producing papers in the top-rated IS conference. We discuss the findings and implications of the study.
    Date
    3. 1.2007 17:22:03
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.9, S.1263-1274
  10. Mingers, J.; Burrell, Q.L.: Modeling citation behavior in Management Science journals (2006) 0.02
    0.018134935 = product of:
      0.054404803 = sum of:
        0.054404803 = sum of:
          0.018790042 = weight(_text_:of in 994) [ClassicSimilarity], result of:
            0.018790042 = score(doc=994,freq=14.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.2742677 = fieldWeight in 994, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.046875 = fieldNorm(doc=994)
          0.03561476 = weight(_text_:22 in 994) [ClassicSimilarity], result of:
            0.03561476 = score(doc=994,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.23214069 = fieldWeight in 994, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=994)
      0.33333334 = coord(1/3)
    
    Abstract
    Citation rates are becoming increasingly important in judging the research quality of journals, institutions and departments, and individual faculty. This paper looks at the pattern of citations across different management science journals and over time. A stochastic model is proposed which views the generating mechanism of citations as a gamma mixture of Poisson processes generating overall a negative binomial distribution. This is tested empirically with a large sample of papers published in 1990 from six management science journals and found to fit well. The model is extended to include obsolescence, i.e., that the citation rate for a paper varies over its cited lifetime. This leads to the additional citations distribution which shows that future citations are a linear function of past citations with a time-dependent and decreasing slope. This is also verified empirically in a way that allows different obsolescence functions to be fitted to the data. Conclusions concerning the predictability of future citations, and future research in this area are discussed.
    Date
    26.12.2007 19:22:05
  11. H-Index auch im Web of Science (2008) 0.02
    0.01597191 = product of:
      0.047915727 = sum of:
        0.047915727 = sum of:
          0.01230097 = weight(_text_:of in 590) [ClassicSimilarity], result of:
            0.01230097 = score(doc=590,freq=6.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.17955035 = fieldWeight in 590, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.046875 = fieldNorm(doc=590)
          0.03561476 = weight(_text_:22 in 590) [ClassicSimilarity], result of:
            0.03561476 = score(doc=590,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.23214069 = fieldWeight in 590, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=590)
      0.33333334 = coord(1/3)
    
    Content
    "Zur Kurzmitteilung "Latest enhancements in Scopus: ... h-Index incorporated in Scopus" in den letzten Online-Mitteilungen (Online-Mitteilungen 92, S.31) ist zu korrigieren, dass der h-Index sehr wohl bereits im Web of Science enthalten ist. Allerdings findet man/frau diese Information nicht in der "cited ref search", sondern neben der Trefferliste einer Quick Search, General Search oder einer Suche über den Author Finder in der rechten Navigationsleiste unter dem Titel "Citation Report". Der "Citation Report" bietet für die in der jeweiligen Trefferliste angezeigten Arbeiten: - Die Gesamtzahl der Zitierungen aller Arbeiten in der Trefferliste - Die mittlere Zitationshäufigkeit dieser Arbeiten - Die Anzahl der Zitierungen der einzelnen Arbeiten, aufgeschlüsselt nach Publikationsjahr der zitierenden Arbeiten - Die mittlere Zitationshäufigkeit dieser Arbeiten pro Jahr - Den h-Index (ein h-Index von x sagt aus, dass x Arbeiten der Trefferliste mehr als x-mal zitiert wurden; er ist gegenüber sehr hohen Zitierungen einzelner Arbeiten unempfindlicher als die mittlere Zitationshäufigkeit)."
    Date
    6. 4.2008 19:04:22
    Object
    Web of Science
  12. Ahlgren, P.; Jarneving, B.; Rousseau, R.: Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient (2003) 0.01
    0.013604727 = product of:
      0.04081418 = sum of:
        0.04081418 = sum of:
          0.017071007 = weight(_text_:of in 5171) [ClassicSimilarity], result of:
            0.017071007 = score(doc=5171,freq=26.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.2491759 = fieldWeight in 5171, product of:
                5.0990195 = tf(freq=26.0), with freq of:
                  26.0 = termFreq=26.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.03125 = fieldNorm(doc=5171)
          0.023743173 = weight(_text_:22 in 5171) [ClassicSimilarity], result of:
            0.023743173 = score(doc=5171,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.15476047 = fieldWeight in 5171, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=5171)
      0.33333334 = coord(1/3)
    
    Abstract
    Ahlgren, Jarneving, and. Rousseau review accepted procedures for author co-citation analysis first pointing out that since in the raw data matrix the row and column values are identical i,e, the co-citation count of two authors, there is no clear choice for diagonal values. They suggest the number of times an author has been co-cited with himself excluding self citation rather than the common treatment as zeros or as missing values. When the matrix is converted to a similarity matrix the normal procedure is to create a matrix of Pearson's r coefficients between data vectors. Ranking by r and by co-citation frequency and by intuition can easily yield three different orders. It would seem necessary that the adding of zeros to the matrix will not affect the value or the relative order of similarity measures but it is shown that this is not the case with Pearson's r. Using 913 bibliographic descriptions form the Web of Science of articles form JASIS and Scientometrics, authors names were extracted, edited and 12 information retrieval authors and 12 bibliometric authors each from the top 100 most cited were selected. Co-citation and r value (diagonal elements treated as missing) matrices were constructed, and then reconstructed in expanded form. Adding zeros can both change the r value and the ordering of the authors based upon that value. A chi-squared distance measure would not violate these requirements, nor would the cosine coefficient. It is also argued that co-citation data is ordinal data since there is no assurance of an absolute zero number of co-citations, and thus Pearson is not appropriate. The number of ties in co-citation data make the use of the Spearman rank order coefficient problematic.
    Date
    9. 7.2006 10:22:35
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.6, S.549-568
  13. Hayer, L.: Lazarsfeld zitiert : eine bibliometrische Analyse (2008) 0.01
    0.012682905 = product of:
      0.038048714 = sum of:
        0.038048714 = sum of:
          0.008369749 = weight(_text_:of in 1934) [ClassicSimilarity], result of:
            0.008369749 = score(doc=1934,freq=4.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.12216854 = fieldWeight in 1934, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1934)
          0.029678967 = weight(_text_:22 in 1934) [ClassicSimilarity], result of:
            0.029678967 = score(doc=1934,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.19345059 = fieldWeight in 1934, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1934)
      0.33333334 = coord(1/3)
    
    Abstract
    Um sich einer Antwort auf die Frage anzunähern, welche Bedeutung der Nachlass eines Wissenschaftlers wie jener Paul F. Lazarsfelds (mit zahlreichen noch unveröffentlichten Schriften) für die aktuelle Forschung haben könne, kann untersucht werden, wie häufig dieser Wissenschaftler zitiert wird. Wenn ein Autor zitiert wird, wird er auch genutzt. Wird er über einen langen Zeitraum oft genutzt, ist vermutlich auch die Auseinandersetzung mit seinem Nachlass von Nutzen. Außerdem kann aufgrund der Zitierungen festgestellt werden, was aus dem Lebenswerk eines Wissenschaftlers für die aktuelle Forschung relevant erscheint. Daraus können die vordringlichen Fragestellungen in der Bearbeitung des Nachlasses abgeleitet werden. Die Aufgabe für die folgende Untersuchung lautete daher: Wie oft wird Paul F. Lazarsfeld zitiert? Dabei interessierte auch: Wer zitiert wo? Die Untersuchung wurde mit Hilfe der Meta-Datenbank "ISI Web of Knowledge" durchgeführt. In dieser wurde im "Web of Science" mit dem Werkzeug "Cited Reference Search" nach dem zitierten Autor (Cited Author) "Lazarsfeld P*" gesucht. Diese Suche ergab 1535 Referenzen (References). Werden alle Referenzen gewählt, führt dies zu 4839 Ergebnissen (Results). Dabei wurden die Datenbanken SCI-Expanded, SSCI und A&HCI verwendet. Bei dieser Suche wurden die Publikationsjahre 1941-2008 analysiert. Vor 1956 wurden allerdings nur sehr wenige Zitate gefunden: 1946 fünf, ansonsten maximal drei, 1942-1944 und 1949 überhaupt keines. Zudem ist das Jahr 2008 noch lange nicht zu Ende. (Es gab jedoch schon vor Ende März 24 Zitate!)
    Date
    22. 6.2008 12:54:12
  14. Milman, B.L.: Individual co-citation clusters as nuclei of complete and dynamic informetric models of scientific and technological areas (1994) 0.00
    0.0049790437 = product of:
      0.014937131 = sum of:
        0.014937131 = product of:
          0.029874261 = sum of:
            0.029874261 = weight(_text_:of in 37) [ClassicSimilarity], result of:
              0.029874261 = score(doc=37,freq=26.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.43605784 = fieldWeight in 37, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=37)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Describes the construction of improved informetric models of individual scientific and technological areas on the basis of individual co citation clusters. The developed methodology of replenishment of research front with accidently absent papers describes the model more completely. Proposes the simple method of cluster 'dynamization' for the study of evolution of research area. The transition under consideration from co citation clusters to lexical maps of papers and patents enables the monitoring of the relationshuip between R and D in a given technological area. Provides the example from modern chemical engineering of Pressure-Swing Adsorption
  15. Magri, M.; Solari, A.: ¬The SCI Journal Citation Reports : a potential tool for studying journals? (1996) 0.00
    0.0047837105 = product of:
      0.014351131 = sum of:
        0.014351131 = product of:
          0.028702263 = sum of:
            0.028702263 = weight(_text_:of in 5076) [ClassicSimilarity], result of:
              0.028702263 = score(doc=5076,freq=24.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.41895083 = fieldWeight in 5076, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5076)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Analyses 6 indicators of the Science Citation Index Journals Citation Reports over a 19 year period: number of total citations, number of citations to the previous 2 years, number of source items, impact factor, immediacy index and cited half life. Proposes a box plot method to aggregate the values of each indicator so as to obtain at a glance portrayals of the JCR population from 1974 to 1993. This 'rereading' of the JCR, which presents the JCR product differently, makes it possible to shed new light on the large sub population of journals not at the top of the rankings
    Issue
    1. Description of the JCR journal population based on the number of citations received, number of source items, impact factor, immediacy index and cited half life
  16. Meadows, A.J.: ¬The citation characteristics of astronomical research literature (2004) 0.00
    0.0047837105 = product of:
      0.014351131 = sum of:
        0.014351131 = product of:
          0.028702263 = sum of:
            0.028702263 = weight(_text_:of in 4416) [ClassicSimilarity], result of:
              0.028702263 = score(doc=4416,freq=24.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.41895083 = fieldWeight in 4416, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4416)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The citation characteristics of papers in the Monthly Notices of the Royal Astronomical Society (especially for the years 1963-1965) have been examined as a means of studying the usage of astronomical literature in the UK. The decrease of usage with age has been investigated and the decay half-life determined. Particular attention has been paid to the immediacy effect, and to its possible variation in different sub-fields of astronomy. The citations have also been separated according to journal of origin. As a result of this study, a quantitative estimate has been made of the titles and backruns that are required to satisfy a given percentage of the demand for astronomical research literature in this country.
    Source
    Journal of documentation. 60(2004) no.6, S.597-600
  17. Kostoff, R.N.: ¬The use and misuse of citation analysis in research evaluation (1998) 0.00
    0.0047346456 = product of:
      0.014203936 = sum of:
        0.014203936 = product of:
          0.028407872 = sum of:
            0.028407872 = weight(_text_:of in 4129) [ClassicSimilarity], result of:
              0.028407872 = score(doc=4129,freq=18.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.41465375 = fieldWeight in 4129, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4129)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Leydesdorff, in his 1998 paper 'Theories of citation?', addresses the history of citations and citation analysis, and the transformation of a reference mechanism into a purportedly quantitative measure of research impact/quality. Examines different facets of citations and citation analysis, and discusses the validity of citation analysis as a useful measure of research impact/quality
    Footnote
    Contribution to a thematic issue devoted to 'Theories of citation?'
  18. Bornmann, L.; Daniel, H.-D.: Multiple publication on a single research study: does it pay? : The influence of number of research articles on total citation counts in biomedicine (2007) 0.00
    0.004626554 = product of:
      0.013879661 = sum of:
        0.013879661 = product of:
          0.027759323 = sum of:
            0.027759323 = weight(_text_:of in 444) [ClassicSimilarity], result of:
              0.027759323 = score(doc=444,freq=44.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.40518725 = fieldWeight in 444, product of:
                  6.6332498 = tf(freq=44.0), with freq of:
                    44.0 = termFreq=44.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=444)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Scientists may seek to report a single definable body of research in more than one publication, that is, in repeated reports of the same work or in fractional reports, in order to disseminate their research as widely as possible in the scientific community. Up to now, however, it has not been examined whether this strategy of "multiple publication" in fact leads to greater reception of the research. In the present study, we investigate the influence of number of articles reporting the results of a single study on reception in the scientific community (total citation counts of an article on a single study). Our data set consists of 96 applicants for a research fellowship from the Boehringer Ingelheim Fonds (BIF), an international foundation for the promotion of basic research in biomedicine. The applicants reported to us all articles that they had published within the framework of their doctoral research projects. On this single project, the applicants had published from 1 to 16 articles (M = 4; Mdn = 3). The results of a regression model with an interaction term show that the practice of multiple publication of research study results does in fact lead to greater reception of the research (higher total citation counts) in the scientific community. However, reception is dependent upon length of article: the longer the article, the more total citation counts increase with the number of articles. Thus, it pays for scientists to practice multiple publication of study results in the form of sizable reports.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.8, S.1100-1107
  19. Snyder, H.; Cronin, B.; Davenport, E.: What's the use of citation? : Citation analysis as a literature topic in selected disciplines of the social sciences (1995) 0.00
    0.0045843013 = product of:
      0.013752903 = sum of:
        0.013752903 = product of:
          0.027505806 = sum of:
            0.027505806 = weight(_text_:of in 1825) [ClassicSimilarity], result of:
              0.027505806 = score(doc=1825,freq=30.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.4014868 = fieldWeight in 1825, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1825)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Reports results of a study to investigate the place and role of citation analysis in selected disciplines in the social sciences, including library and information science. 5 core library and information science periodicals: Journal of documentation; Library quarterly; Journal of the American Society for Information Science; College and research libraries; and the Journal of information science, were studed to determine the percentage of articles devoted to citation analysis and develop an indictive typology to categorize the major foci of research being conducted under the rubric of citation analysis. Similar analysis was conducted for periodicals in other social sciences disciplines. Demonstrates how the rubric can be used to dertermine how citatiion analysis is applied within library and information science and other disciplines. By isolating citation from bibliometrics in general, this work is differentiated from other, previous studies. Analysis of data from a 10 year sample of transdisciplinary social sciences literature suggests that 2 application areas predominate: the validity of citation as an evaluation tool; and impact or performance studies of authors, periodicals, and institutions
    Source
    Journal of information science. 21(1995) no.2, S.75-85
  20. Garfield, E.: From citation indexes to informetrics : is the tail now wagging the dog? (1998) 0.00
    0.0045800544 = product of:
      0.013740162 = sum of:
        0.013740162 = product of:
          0.027480325 = sum of:
            0.027480325 = weight(_text_:of in 2809) [ClassicSimilarity], result of:
              0.027480325 = score(doc=2809,freq=22.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.40111488 = fieldWeight in 2809, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2809)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Provides a synoptic review and history of citation indexes and their evolution into research evaluation tools including a discussion of the use of bibliometric data for evaluating US institutions (academic departments) by the National Research Council (NRC). Covers the origin and uses of periodical impact factors, validation studies of citation analysis, information retrieval and dissemination (current awareness), citation consciousness, historiography and science mapping, Citation Classics, and the history of contemporary science. Illustrates the retrieval of information by cited reference searching, especially as it applies to avoiding duplicated research. Discusses the 15 year cumulative impacts of periodicals and the percentage of uncitedness, the emergence of scientometrics, old boy networks, and citation frequency distributions. Concludes with observations about the future of citation indexing

Authors

Languages

  • e 135
  • d 5
  • chi 1
  • More… Less…

Types

  • a 135
  • m 3
  • s 3
  • el 1
  • r 1
  • More… Less…

Classifications