Search (40 results, page 1 of 2)

  • × year_i:[2020 TO 2030}
  • × theme_ss:"Computerlinguistik"
  1. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.04
    0.040085282 = product of:
      0.06012792 = sum of:
        0.052187677 = product of:
          0.20875071 = sum of:
            0.20875071 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
              0.20875071 = score(doc=862,freq=2.0), product of:
                0.37143064 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.043811057 = queryNorm
                0.56201804 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.25 = coord(1/4)
        0.007940242 = product of:
          0.015880484 = sum of:
            0.015880484 = weight(_text_:of in 862) [ClassicSimilarity], result of:
              0.015880484 = score(doc=862,freq=10.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.23179851 = fieldWeight in 862, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This research revisits the classic Turing test and compares recent large language models such as ChatGPT for their abilities to reproduce human-level comprehension and compelling text generation. Two task challenges- summary and question answering- prompt ChatGPT to produce original content (98-99%) from a single text entry and sequential questions initially posed by Turing in 1950. We score the original and generated content against the OpenAI GPT-2 Output Detector from 2019, and establish multiple cases where the generated content proves original and undetectable (98%). The question of a machine fooling a human judge recedes in this work relative to the question of "how would one prove it?" The original contribution of the work presents a metric and simple grammatical set for understanding the writing mechanics of chatbots in evaluating their readability and statistical clarity, engagement, delivery, overall quality, and plagiarism risks. While Turing's original prose scores at least 14% below the machine-generated output, whether an algorithm displays hints of Turing's true initial thoughts (the "Lovelace 2.0" test) remains unanswerable.
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
  2. Morris, V.: Automated language identification of bibliographic resources (2020) 0.02
    0.023560425 = product of:
      0.070681274 = sum of:
        0.070681274 = sum of:
          0.023194931 = weight(_text_:of in 5749) [ClassicSimilarity], result of:
            0.023194931 = score(doc=5749,freq=12.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.33856338 = fieldWeight in 5749, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.0625 = fieldNorm(doc=5749)
          0.047486346 = weight(_text_:22 in 5749) [ClassicSimilarity], result of:
            0.047486346 = score(doc=5749,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.30952093 = fieldWeight in 5749, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=5749)
      0.33333334 = coord(1/3)
    
    Abstract
    This article describes experiments in the use of machine learning techniques at the British Library to assign language codes to catalog records, in order to provide information about the language of content of the resources described. In the first phase of the project, language codes were assigned to 1.15 million records with 99.7% confidence. The automated language identification tools developed will be used to contribute to future enhancement of over 4 million legacy records.
    Date
    2. 3.2020 19:04:22
  3. Luo, L.; Ju, J.; Li, Y.-F.; Haffari, G.; Xiong, B.; Pan, S.: ChatRule: mining logical rules with large language models for knowledge graph reasoning (2023) 0.02
    0.015811294 = product of:
      0.047433883 = sum of:
        0.047433883 = sum of:
          0.017754918 = weight(_text_:of in 1171) [ClassicSimilarity], result of:
            0.017754918 = score(doc=1171,freq=18.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.25915858 = fieldWeight in 1171, product of:
                4.2426405 = tf(freq=18.0), with freq of:
                  18.0 = termFreq=18.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1171)
          0.029678967 = weight(_text_:22 in 1171) [ClassicSimilarity], result of:
            0.029678967 = score(doc=1171,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.19345059 = fieldWeight in 1171, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1171)
      0.33333334 = coord(1/3)
    
    Abstract
    Logical rules are essential for uncovering the logical connections between relations, which could improve the reasoning performance and provide interpretable results on knowledge graphs (KGs). Although there have been many efforts to mine meaningful logical rules over KGs, existing methods suffer from the computationally intensive searches over the rule space and a lack of scalability for large-scale KGs. Besides, they often ignore the semantics of relations which is crucial for uncovering logical connections. Recently, large language models (LLMs) have shown impressive performance in the field of natural language processing and various applications, owing to their emergent ability and generalizability. In this paper, we propose a novel framework, ChatRule, unleashing the power of large language models for mining logical rules over knowledge graphs. Specifically, the framework is initiated with an LLM-based rule generator, leveraging both the semantic and structural information of KGs to prompt LLMs to generate logical rules. To refine the generated rules, a rule ranking module estimates the rule quality by incorporating facts from existing KGs. Last, a rule validator harnesses the reasoning ability of LLMs to validate the logical correctness of ranked rules through chain-of-thought reasoning. ChatRule is evaluated on four large-scale KGs, w.r.t. different rule quality metrics and downstream tasks, showing the effectiveness and scalability of our method.
    Date
    23.11.2023 19:07:22
  4. ¬Der Student aus dem Computer (2023) 0.01
    0.013850185 = product of:
      0.041550554 = sum of:
        0.041550554 = product of:
          0.08310111 = sum of:
            0.08310111 = weight(_text_:22 in 1079) [ClassicSimilarity], result of:
              0.08310111 = score(doc=1079,freq=2.0), product of:
                0.15341885 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043811057 = queryNorm
                0.5416616 = fieldWeight in 1079, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1079)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    27. 1.2023 16:22:55
  5. Bager, J.: ¬Die Text-KI ChatGPT schreibt Fachtexte, Prosa, Gedichte und Programmcode (2023) 0.01
    0.007914391 = product of:
      0.023743173 = sum of:
        0.023743173 = product of:
          0.047486346 = sum of:
            0.047486346 = weight(_text_:22 in 835) [ClassicSimilarity], result of:
              0.047486346 = score(doc=835,freq=2.0), product of:
                0.15341885 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043811057 = queryNorm
                0.30952093 = fieldWeight in 835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=835)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    29.12.2022 18:22:55
  6. Rieger, F.: Lügende Computer (2023) 0.01
    0.007914391 = product of:
      0.023743173 = sum of:
        0.023743173 = product of:
          0.047486346 = sum of:
            0.047486346 = weight(_text_:22 in 912) [ClassicSimilarity], result of:
              0.047486346 = score(doc=912,freq=2.0), product of:
                0.15341885 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043811057 = queryNorm
                0.30952093 = fieldWeight in 912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=912)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    16. 3.2023 19:22:55
  7. Zaitseva, E.M.: Developing linguistic tools of thematic search in library information systems (2023) 0.00
    0.003945538 = product of:
      0.0118366135 = sum of:
        0.0118366135 = product of:
          0.023673227 = sum of:
            0.023673227 = weight(_text_:of in 1187) [ClassicSimilarity], result of:
              0.023673227 = score(doc=1187,freq=32.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.34554482 = fieldWeight in 1187, product of:
                  5.656854 = tf(freq=32.0), with freq of:
                    32.0 = termFreq=32.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1187)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Within the R&D program "Information support of research by scientists and specialists on the basis of RNPLS&T Open Archive - the system of scientific knowledge aggregation", the RNPLS&T analyzes the use of linguistic tools of thematic search in the modern library information systems and the prospects for their development. The author defines the key common characteristics of e-catalogs of the largest Russian libraries revealed at the first stage of the analysis. Based on the specified common characteristics and detailed comparison analysis, the author outlines and substantiates the vectors for enhancing search inter faces of e-catalogs. The focus is made on linguistic tools of thematic search in library information systems; the key vectors are suggested: use of thematic search at different search levels with the clear-cut level differentiation; use of combined functionality within thematic search system; implementation of classification search in all e-catalogs; hierarchical representation of classifications; use of the matching systems for classification information retrieval languages, and in the long term classification and verbal information retrieval languages, and various verbal information retrieval languages. The author formulates practical recommendations to improve thematic search in library information systems.
  8. Lee, G.E.; Sun, A.: Understanding the stability of medical concept embeddings (2021) 0.00
    0.0038202507 = product of:
      0.011460752 = sum of:
        0.011460752 = product of:
          0.022921504 = sum of:
            0.022921504 = weight(_text_:of in 159) [ClassicSimilarity], result of:
              0.022921504 = score(doc=159,freq=30.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.33457235 = fieldWeight in 159, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=159)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Frequency is one of the major factors for training quality word embeddings. Several studies have recently discussed the stability of word embeddings in general domain and suggested factors influencing the stability. In this work, we conduct a detailed analysis on the stability of concept embeddings in medical domain, particularly in relations with concept frequency. The analysis reveals the surprising high stability of low-frequency concepts: low-frequency (<100) concepts have the same high stability as high-frequency (>1,000) concepts. To develop a deeper understanding of this finding, we propose a new factor, the noisiness of context words, which influences the stability of medical concept embeddings regardless of high or low frequency. We evaluate the proposed factor by showing the linear correlation with the stability of medical concept embeddings. The correlations are clear and consistent with various groups of medical concepts. Based on the linear relations, we make suggestions on ways to adjust the noisiness of context words for the improvement of stability. Finally, we demonstrate that the linear relation of the proposed factor extends to the word embedding stability in general domain.
    Source
    Journal of the Association for Information Science and Technology. 72(2021) no.3, S.346-356
  9. Pepper, S.: ¬The typology and semantics of binominal lexemes : noun-noun compounds and their functional equivalents (2020) 0.00
    0.003784427 = product of:
      0.01135328 = sum of:
        0.01135328 = product of:
          0.02270656 = sum of:
            0.02270656 = weight(_text_:of in 104) [ClassicSimilarity], result of:
              0.02270656 = score(doc=104,freq=46.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.33143494 = fieldWeight in 104, product of:
                  6.78233 = tf(freq=46.0), with freq of:
                    46.0 = termFreq=46.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.03125 = fieldNorm(doc=104)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The dissertation establishes 'binominal lexeme' as a comparative concept and discusses its cross-linguistic typology and semantics. Informally, a binominal lexeme is a noun-noun compound or functional equivalent; more precisely, it is a lexical item that consists primarily of two thing-morphs between which there exists an unstated semantic relation. Examples of binominals include Mandarin Chinese ?? (tielù) [iron road], French chemin de fer [way of iron] and Russian ???????? ?????? (zeleznaja doroga) [iron:adjz road]. All of these combine a word denoting 'iron' and a word denoting 'road' or 'way' to denote the meaning railway. In each case, the unstated semantic relation is one of composition: a railway is conceptualized as a road that is composed (or made) of iron. However, three different morphosyntactic strategies are employed: compounding, prepositional phrase and relational adjective. This study explores the range of such strategies used by a worldwide sample of 106 languages to express a set of 100 meanings from various semantic domains, resulting in a classification consisting of nine different morphosyntactic types. The semantic relations found in the data are also explored and a classification called the Hatcher-Bourque system is developed that operates at two levels of granularity, together with a tool for classifying binominals, the Bourquifier. The classification is extended to other subfields of language, including metonymy and lexical semantics, and beyond language to the domain of knowledge representation, resulting in a proposal for a general model of associative relations called the PHAB model. The many findings of the research include universals concerning the recruitment of anchoring nominal modification strategies, a method for comparing non-binary typologies, the non-universality (despite its predominance) of compounding, and a scale of frequencies for semantic relations which may provide insights into the associative nature of human thought.
    Imprint
    Oslo : University of Oslo / Faculty of Humanities / Department of Linguistics and Scandinavian Studies
  10. Shree, P.: ¬The journey of Open AI GPT models (2020) 0.00
    0.003743066 = product of:
      0.0112291975 = sum of:
        0.0112291975 = product of:
          0.022458395 = sum of:
            0.022458395 = weight(_text_:of in 869) [ClassicSimilarity], result of:
              0.022458395 = score(doc=869,freq=20.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.32781258 = fieldWeight in 869, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=869)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Generative Pre-trained Transformer (GPT) models by OpenAI have taken natural language processing (NLP) community by storm by introducing very powerful language models. These models can perform various NLP tasks like question answering, textual entailment, text summarisation etc. without any supervised training. These language models need very few to no examples to understand the tasks and perform equivalent or even better than the state-of-the-art models trained in supervised fashion. In this article we will cover the journey of these models and understand how they have evolved over a period of 2 years. 1. Discussion of GPT-1 paper (Improving Language Understanding by Generative Pre-training). 2. Discussion of GPT-2 paper (Language Models are unsupervised multitask learners) and its subsequent improvements over GPT-1. 3. Discussion of GPT-3 paper (Language models are few shot learners) and the improvements which have made it one of the most powerful models NLP has seen till date. This article assumes familiarity with the basics of NLP terminologies and transformer architecture.
    Source
    https://medium.com/walmartglobaltech/the-journey-of-open-ai-gpt-models-32d95b7b7fb2
  11. Chou, C.; Chu, T.: ¬An analysis of BERT (NLP) for assisted subject indexing for Project Gutenberg (2022) 0.00
    0.0036536194 = product of:
      0.010960858 = sum of:
        0.010960858 = product of:
          0.021921717 = sum of:
            0.021921717 = weight(_text_:of in 1139) [ClassicSimilarity], result of:
              0.021921717 = score(doc=1139,freq=14.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.31997898 = fieldWeight in 1139, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1139)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In light of AI (Artificial Intelligence) and NLP (Natural language processing) technologies, this article examines the feasibility of using AI/NLP models to enhance the subject indexing of digital resources. While BERT (Bidirectional Encoder Representations from Transformers) models are widely used in scholarly communities, the authors assess whether BERT models can be used in machine-assisted indexing in the Project Gutenberg collection, through suggesting Library of Congress subject headings filtered by certain Library of Congress Classification subclass labels. The findings of this study are informative for further research on BERT models to assist with automatic subject indexing for digital library collections.
  12. Pepper, S.; Arnaud, P.J.L.: Absolutely PHAB : toward a general model of associative relations (2020) 0.00
    0.00355646 = product of:
      0.0106693795 = sum of:
        0.0106693795 = product of:
          0.021338759 = sum of:
            0.021338759 = weight(_text_:of in 103) [ClassicSimilarity], result of:
              0.021338759 = score(doc=103,freq=26.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.31146988 = fieldWeight in 103, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=103)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    There have been many attempts at classifying the semantic modification relations (R) of N + N compounds but this work has not led to the acceptance of a definitive scheme, so that devising a reusable classification is a worthwhile aim. The scope of this undertaking is extended to other binominal lexemes, i.e. units that contain two thing-morphemes without explicitly stating R, like prepositional units, N + relational adjective units, etc. The 25-relation taxonomy of Bourque (2014) was tested against over 15,000 binominal lexemes from 106 languages and extended to a 29-relation scheme ("Bourque2") through the introduction of two new reversible relations. Bourque2 is then mapped onto Hatcher's (1960) four-relation scheme (extended by the addition of a fifth relation, similarity , as "Hatcher2"). This results in a two-tier system usable at different degrees of granularities. On account of its semantic proximity to compounding, metonymy is then taken into account, following Janda's (2011) suggestion that it plays a role in word formation; Peirsman and Geeraerts' (2006) inventory of 23 metonymic patterns is mapped onto Bourque2, confirming the identity of metonymic and binominal modification relations. Finally, Blank's (2003) and Koch's (2001) work on lexical semantics justifies the addition to the scheme of a third, superordinate level which comprises the three Aristotelean principles of similarity, contiguity and contrast.
  13. Jha, A.: Why GPT-4 isn't all it's cracked up to be (2023) 0.00
    0.0034523457 = product of:
      0.010357037 = sum of:
        0.010357037 = product of:
          0.020714074 = sum of:
            0.020714074 = weight(_text_:of in 923) [ClassicSimilarity], result of:
              0.020714074 = score(doc=923,freq=50.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.3023517 = fieldWeight in 923, product of:
                  7.071068 = tf(freq=50.0), with freq of:
                    50.0 = termFreq=50.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=923)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    "I still don't know what to think about GPT-4, the new large language model (LLM) from OpenAI. On the one hand it is a remarkable product that easily passes the Turing test. If you ask it questions, via the ChatGPT interface, GPT-4 can easily produce fluid sentences largely indistinguishable from those a person might write. But on the other hand, amid the exceptional levels of hype and anticipation, it's hard to know where GPT-4 and other LLMs truly fit in the larger project of making machines intelligent.
    They might appear intelligent, but LLMs are nothing of the sort. They don't understand the meanings of the words they are using, nor the concepts expressed within the sentences they create. When asked how to bring a cow back to life, earlier versions of ChatGPT, for example, which ran on a souped-up version of GPT-3, would confidently provide a list of instructions. So-called hallucinations like this happen because language models have no concept of what a "cow" is or that "death" is a non-reversible state of being. LLMs do not have minds that can think about objects in the world and how they relate to each other. All they "know" is how likely it is that some sets of words will follow other sets of words, having calculated those probabilities from their training data. To make sense of all this, I spoke with Gary Marcus, an emeritus professor of psychology and neural science at New York University, for "Babbage", our science and technology podcast. Last year, as the world was transfixed by the sudden appearance of ChatGPT, he made some fascinating predictions about GPT-4.
    He doesn't dismiss the potential of LLMs to become useful assistants in all sorts of ways-Google and Microsoft have already announced that they will be integrating LLMs into their search and office productivity software. But he talked me through some of his criticisms of the technology's apparent capabilities. At the heart of Dr Marcus's thoughtful critique is an attempt to put LLMs into proper context. Deep learning, the underlying technology that makes LLMs work, is only one piece of the puzzle in the quest for machine intelligence. To reach the level of artificial general intelligence (AGI) that many tech companies strive for-i.e. machines that can plan, reason and solve problems in the way human brains can-they will need to deploy a suite of other AI techniques. These include, for example, the kind of "symbolic AI" that was popular before artificial neural networks and deep learning became all the rage.
    People use symbols to think about the world: if I say the words "cat", "house" or "aeroplane", you know instantly what I mean. Symbols can also be used to describe the way things are behaving (running, falling, flying) or they can represent how things should behave in relation to each other (a "+" means add the numbers before and after). Symbolic AI is a way to embed this human knowledge and reasoning into computer systems. Though the idea has been around for decades, it fell by the wayside a few years ago as deep learning-buoyed by the sudden easy availability of lots of training data and cheap computing power-became more fashionable. In the near future at least, there's no doubt people will find LLMs useful. But whether they represent a critical step on the path towards AGI, or rather just an intriguing detour, remains to be seen."
  14. Harari, Y.N.: ¬[Yuval-Noah-Harari-argues-that] AI has hacked the operating system of human civilisation (2023) 0.00
    0.0034169364 = product of:
      0.010250809 = sum of:
        0.010250809 = product of:
          0.020501617 = sum of:
            0.020501617 = weight(_text_:of in 953) [ClassicSimilarity], result of:
              0.020501617 = score(doc=953,freq=6.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.2992506 = fieldWeight in 953, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.078125 = fieldNorm(doc=953)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Storytelling computers will change the course of human history, says the historian and philosopher.
    Source
    https://www.economist.com/by-invitation/2023/04/28/yuval-noah-harari-argues-that-ai-has-hacked-the-operating-system-of-human-civilisation?giftId=6982bba3-94bc-441d-9153-6d42468817ad
  15. Lund, B.D.: ¬A brief review of ChatGPT : its value and the underlying GPT technology (2023) 0.00
    0.0033478998 = product of:
      0.010043699 = sum of:
        0.010043699 = product of:
          0.020087399 = sum of:
            0.020087399 = weight(_text_:of in 873) [ClassicSimilarity], result of:
              0.020087399 = score(doc=873,freq=16.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.2932045 = fieldWeight in 873, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=873)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In this review paper, ChatGPT, a public tool developed by OpenAI that utilizes GPT technology to fulfill a range of text-based requests is examined. ChatGPT is a sophisticated chatbot capable of understanding and interpreting user requests, generating appropriate responses in nearly natural human language, and completing advanced tasks such as writing thank you letters and addressing productivity issues. The details of how ChatGPT works, as well as the potential impacts of this technology on various industries, are discussed. The concept of Generative Pre-Trained Transformer (GPT), the language model on which ChatGPT is based, is also explored, as well as the process of unsupervised pretraining and supervised fine-tuning that is used to refine the GPT algorithm. A letter written by ChatGPT to a colleague from Iran is presented as an example of the chatbot's capabilities.
  16. Meng, K.; Ba, Z.; Ma, Y.; Li, G.: ¬A network coupling approach to detecting hierarchical linkages between science and technology (2024) 0.00
    0.0033478998 = product of:
      0.010043699 = sum of:
        0.010043699 = product of:
          0.020087399 = sum of:
            0.020087399 = weight(_text_:of in 1205) [ClassicSimilarity], result of:
              0.020087399 = score(doc=1205,freq=16.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.2932045 = fieldWeight in 1205, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1205)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Detecting science-technology hierarchical linkages is beneficial for understanding deep interactions between science and technology (S&T). Previous studies have mainly focused on linear linkages between S&T but ignored their structural linkages. In this paper, we propose a network coupling approach to inspect hierarchical interactions of S&T by integrating their knowledge linkages and structural linkages. S&T knowledge networks are first enhanced with bidirectional encoder representation from transformers (BERT) knowledge alignment, and then their hierarchical structures are identified based on K-core decomposition. Hierarchical coupling preferences and strengths of the S&T networks over time are further calculated based on similarities of coupling nodes' degree distribution and similarities of coupling edges' weight distribution. Extensive experimental results indicate that our approach is feasible and robust in identifying the coupling hierarchy with superior performance compared to other isomorphism and dissimilarity algorithms. Our research extends the mindset of S&T linkage measurement by identifying patterns and paths of the interaction of S&T hierarchical knowledge.
    Source
    Journal of the Association for Information Science and Technology. 75(2023) no.2, S.167-187
  17. Xiang, R.; Chersoni, E.; Lu, Q.; Huang, C.-R.; Li, W.; Long, Y.: Lexical data augmentation for sentiment analysis (2021) 0.00
    0.003271467 = product of:
      0.009814401 = sum of:
        0.009814401 = product of:
          0.019628802 = sum of:
            0.019628802 = weight(_text_:of in 392) [ClassicSimilarity], result of:
              0.019628802 = score(doc=392,freq=22.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.28651062 = fieldWeight in 392, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=392)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Machine learning methods, especially deep learning models, have achieved impressive performance in various natural language processing tasks including sentiment analysis. However, deep learning models are more demanding for training data. Data augmentation techniques are widely used to generate new instances based on modifications to existing data or relying on external knowledge bases to address annotated data scarcity, which hinders the full potential of machine learning techniques. This paper presents our work using part-of-speech (POS) focused lexical substitution for data augmentation (PLSDA) to enhance the performance of machine learning algorithms in sentiment analysis. We exploit POS information to identify words to be replaced and investigate different augmentation strategies to find semantically related substitutions when generating new instances. The choice of POS tags as well as a variety of strategies such as semantic-based substitution methods and sampling methods are discussed in detail. Performance evaluation focuses on the comparison between PLSDA and two previous lexical substitution-based data augmentation methods, one of which is thesaurus-based, and the other is lexicon manipulation based. Our approach is tested on five English sentiment analysis benchmarks: SST-2, MR, IMDB, Twitter, and AirRecord. Hyperparameters such as the candidate similarity threshold and number of newly generated instances are optimized. Results show that six classifiers (SVM, LSTM, BiLSTM-AT, bidirectional encoder representations from transformers [BERT], XLNet, and RoBERTa) trained with PLSDA achieve accuracy improvement of more than 0.6% comparing to two previous lexical substitution methods averaged on five benchmarks. Introducing POS constraint and well-designed augmentation strategies can improve the reliability of lexical data augmentation methods. Consequently, PLSDA significantly improves the performance of sentiment analysis algorithms.
    Source
    Journal of the Association for Information Science and Technology. 72(2021) no.11, S.1432-1447
  18. Andrushchenko, M.; Sandberg, K.; Turunen, R.; Marjanen, J.; Hatavara, M.; Kurunmäki, J.; Nummenmaa, T.; Hyvärinen, M.; Teräs, K.; Peltonen, J.; Nummenmaa, J.: Using parsed and annotated corpora to analyze parliamentarians' talk in Finland (2022) 0.00
    0.003271467 = product of:
      0.009814401 = sum of:
        0.009814401 = product of:
          0.019628802 = sum of:
            0.019628802 = weight(_text_:of in 471) [ClassicSimilarity], result of:
              0.019628802 = score(doc=471,freq=22.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.28651062 = fieldWeight in 471, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=471)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    We present a search system for grammatically analyzed corpora of Finnish parliamentary records and interviews with former parliamentarians, annotated with metadata of talk structure and involved parliamentarians, and discuss their use through carefully chosen digital humanities case studies. We first introduce the construction, contents, and principles of use of the corpora. Then we discuss the application of the search system and the corpora to study how politicians talk about power, how ideological terms are used in political speech, and how to identify narratives in the data. All case studies stem from questions in the humanities and the social sciences, but rely on the grammatically parsed corpora in both identifying and quantifying passages of interest. Finally, the paper discusses the role of natural language processing methods for questions in the (digital) humanities. It makes the claim that a digital humanities inquiry of parliamentary speech and interviews with politicians cannot only rely on computational humanities modeling, but needs to accommodate a range of perspectives starting with simple searches, quantitative exploration, and ending with modeling. Furthermore, the digital humanities need a more thorough discussion about how the utilization of tools from information science and technologies alter the research questions posed in the humanities.
    Source
    Journal of the Association for Information Science and Technology. 73(2022) no.2, S.288-302
  19. Zhang, Y.; Zhang, C.; Li, J.: Joint modeling of characters, words, and conversation contexts for microblog keyphrase extraction (2020) 0.00
    0.0031192217 = product of:
      0.009357665 = sum of:
        0.009357665 = product of:
          0.01871533 = sum of:
            0.01871533 = weight(_text_:of in 5816) [ClassicSimilarity], result of:
              0.01871533 = score(doc=5816,freq=20.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.27317715 = fieldWeight in 5816, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5816)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Millions of messages are produced on microblog platforms every day, leading to the pressing need for automatic identification of key points from the massive texts. To absorb salient content from the vast bulk of microblog posts, this article focuses on the task of microblog keyphrase extraction. In previous work, most efforts treat messages as independent documents and might suffer from the data sparsity problem exhibited in short and informal microblog posts. On the contrary, we propose to enrich contexts via exploiting conversations initialized by target posts and formed by their replies, which are generally centered around relevant topics to the target posts and therefore helpful for keyphrase identification. Concretely, we present a neural keyphrase extraction framework, which has 2 modules: a conversation context encoder and a keyphrase tagger. The conversation context encoder captures indicative representation from their conversation contexts and feeds the representation into the keyphrase tagger, and the keyphrase tagger extracts salient words from target posts. The 2 modules were trained jointly to optimize the conversation context encoding and keyphrase extraction processes. In the conversation context encoder, we leverage hierarchical structures to capture the word-level indicative representation and message-level indicative representation hierarchically. In both of the modules, we apply character-level representations, which enables the model to explore morphological features and deal with the out-of-vocabulary problem caused by the informal language style of microblog messages. Extensive comparison results on real-life data sets indicate that our model outperforms state-of-the-art models from previous studies.
    Source
    Journal of the Association for Information Science and Technology. 71(2020) no.5, S.553-567
  20. Soni, S.; Lerman, K.; Eisenstein, J.: Follow the leader : documents on the leading edge of semantic change get more citations (2021) 0.00
    0.0031192217 = product of:
      0.009357665 = sum of:
        0.009357665 = product of:
          0.01871533 = sum of:
            0.01871533 = weight(_text_:of in 169) [ClassicSimilarity], result of:
              0.01871533 = score(doc=169,freq=20.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.27317715 = fieldWeight in 169, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=169)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Diachronic word embeddings-vector representations of words over time-offer remarkable insights into the evolution of language and provide a tool for quantifying sociocultural change from text documents. Prior work has used such embeddings to identify shifts in the meaning of individual words. However, simply knowing that a word has changed in meaning is insufficient to identify the instances of word usage that convey the historical meaning or the newer meaning. In this study, we link diachronic word embeddings to documents, by situating those documents as leaders or laggards with respect to ongoing semantic changes. Specifically, we propose a novel method to quantify the degree of semantic progressiveness in each word usage, and then show how these usages can be aggregated to obtain scores for each document. We analyze two large collections of documents, representing legal opinions and scientific articles. Documents that are scored as semantically progressive receive a larger number of citations, indicating that they are especially influential. Our work thus provides a new technique for identifying lexical semantic leaders and demonstrates a new link between progressive use of language and influence in a citation network.
    Source
    Journal of the Association for Information Science and Technology. 72(2021) no.4, S.478-492

Languages

  • e 36
  • d 4

Types

  • a 32
  • el 17
  • p 7
  • x 1
  • More… Less…