Search (12 results, page 1 of 1)

  • × author_ss:"Gnoli, C."
  1. Gnoli, C.: Classification transcends library business : the case of BiblioPhil (2010) 0.02
    0.016611008 = product of:
      0.058138527 = sum of:
        0.04413724 = weight(_text_:case in 3698) [ClassicSimilarity], result of:
          0.04413724 = score(doc=3698,freq=2.0), product of:
            0.18173204 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.041336425 = queryNorm
            0.24286987 = fieldWeight in 3698, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3698)
        0.0140012875 = product of:
          0.028002575 = sum of:
            0.028002575 = weight(_text_:22 in 3698) [ClassicSimilarity], result of:
              0.028002575 = score(doc=3698,freq=2.0), product of:
                0.14475311 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041336425 = queryNorm
                0.19345059 = fieldWeight in 3698, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3698)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Date
    22. 7.2010 20:40:08
  2. Szostak, R.; Gnoli, C.: Classifying by phenomena, theories and methods : examples with focused social science theories (2008) 0.01
    0.008827448 = product of:
      0.061792135 = sum of:
        0.061792135 = weight(_text_:case in 2250) [ClassicSimilarity], result of:
          0.061792135 = score(doc=2250,freq=2.0), product of:
            0.18173204 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.041336425 = queryNorm
            0.34001783 = fieldWeight in 2250, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2250)
      0.14285715 = coord(1/7)
    
    Content
    This paper shows how a variety of theories employed across a range of social sciences could be classified in terms of theory type. In each case, notation within the Integrated Level Classification is provided. The paper thus illustrates how one key element of the Leon Manifesto that scholarly documents should be classified in terms of the theory(ies) applied can be achieved in practice.
  3. Gnoli, C.: Classifying phenomena : Part 2: Types and levels (2017) 0.01
    0.007566384 = product of:
      0.052964687 = sum of:
        0.052964687 = weight(_text_:case in 3177) [ClassicSimilarity], result of:
          0.052964687 = score(doc=3177,freq=2.0), product of:
            0.18173204 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.041336425 = queryNorm
            0.29144385 = fieldWeight in 3177, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=3177)
      0.14285715 = coord(1/7)
    
    Abstract
    After making the case that phenomena can be the primary unit of classification (Part 1), some basic principles to group and sort phenomena are considered. Entities can be grouped together on the basis of both their similarity (morphology) and their common origin (phylogeny). The resulting groups will form the classical hierarchical chains of types and subtypes. At every hierarchical degree, phenomena can form ordered sets (arrays), where their sorting can reflect levels of increasing organization, corresponding to an evolutionary order of appearance (emergence). The theory of levels of reality has been investigated by many philosophers and applied to knowledge organization systems by various authors, which are briefly reviewed. At the broadest degree, it allows to identify some major strata of phenomena (forms, matter, life, minds, societies and culture) in turn divided into layers. A list of twenty-six layers is proposed to form the main classes of the Integrative Levels Classification system. A combination of morphology and phylogeny can determine whether a given phenomenon should be a type of an existing level, or a level on its own.
  4. Szostak, R.; Gnoli, C.; López-Huertas, M.: Interdisciplinary knowledge organization 0.01
    0.0072626173 = product of:
      0.050838318 = sum of:
        0.050838318 = weight(_text_:management in 3804) [ClassicSimilarity], result of:
          0.050838318 = score(doc=3804,freq=12.0), product of:
            0.13932906 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.041336425 = queryNorm
            0.3648795 = fieldWeight in 3804, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.03125 = fieldNorm(doc=3804)
      0.14285715 = coord(1/7)
    
    LCSH
    Information technology / Management
    Knowledge management
    Database management
    Subject
    Information technology / Management
    Knowledge management
    Database management
  5. Gnoli, C.: Fundamentos ontológicos de la organización del conocimiento : la teoría de los niveles integrativos aplicada al orden de cita (2011) 0.01
    0.0071336553 = product of:
      0.049935583 = sum of:
        0.049935583 = weight(_text_:case in 2659) [ClassicSimilarity], result of:
          0.049935583 = score(doc=2659,freq=4.0), product of:
            0.18173204 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.041336425 = queryNorm
            0.2747759 = fieldWeight in 2659, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03125 = fieldNorm(doc=2659)
      0.14285715 = coord(1/7)
    
    Abstract
    The field of knowledge organization (KO) can be described as composed of the four distinct but connected layers of theory, systems, representation, and application. This paper focuses on the relations between KO theory and KO systems. It is acknowledged how the structure of KO systems is the product of a mixture of ontological, epistemological, and pragmatical factors. However, different systems give different priorities to each factor. A more ontologically-oriented approach, though not offering quick solutions for any particular group of users, will produce systems of wide and long-lasting application as they are based on general, shareable principles. I take the case of the ontological theory of integrative levels, which has been considered as a useful source for general classifications for several decades, and is currently implemented in the Integrative Levels Classification system. The theory produces a sequence of main classes modelling a natural order between phenomena. This order has interesting effects also on other features of the system, like the citation order of concepts within compounds. As it has been shown by facet analytical theory, it is useful that citation order follow a principle of inversion, as compared to the order of the same concepts in the schedules. In the light of integrative levels theory, this principle also acquires an ontological meaning: phenomena of lower level should be cited first, as most often they act as specifications of higher-level ones. This ontological principle should be complemented by consideration of the epistemological treatment of phenomena: in case a lower-level phenomenon is the main theme, it can be promoted to the leading position in the compound subject heading. The integration of these principles is believed to produce optimal results in the ordering of knowledge contents.
  6. Gnoli, C.; Pullman, T.; Cousson, P.; Merli, G.; Szostak, R.: Representing the structural elements of a freely faceted classification (2011) 0.01
    0.00630532 = product of:
      0.04413724 = sum of:
        0.04413724 = weight(_text_:case in 4825) [ClassicSimilarity], result of:
          0.04413724 = score(doc=4825,freq=2.0), product of:
            0.18173204 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.041336425 = queryNorm
            0.24286987 = fieldWeight in 4825, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4825)
      0.14285715 = coord(1/7)
    
    Abstract
    Freely faceted classifications allow for free combination of concepts across all knowledge domains, and for sorting of the resulting compound classmarks. Starting from work by the Classification Research Group, the Integrative Levels Classification (ILC) project has produced a first edition of a general freely faceted scheme. The system is managed as a MySQL database, and can be browsed through a Web interface. The ILC database structure provides a case for identifying and representing the structural elements of any freely faceted classification. These belong to both the notational and the verbal planes. Notational elements include: arrays, chains, deictics, facets, foci, place of definition of foci, examples of combinations, subclasses of a faceted class, groupings, related classes; verbal elements include: main caption, synonyms, descriptions, included terms, related terms, notes. Encoding of some of these elements in an international mark-up format like SKOS can be problematic, especially as this does not provide for faceted structures, although approximate SKOS equivalents are identified for most of them.
  7. Gnoli, C.: ISKO News (2007) 0.00
    0.0037061884 = product of:
      0.025943318 = sum of:
        0.025943318 = weight(_text_:management in 1092) [ClassicSimilarity], result of:
          0.025943318 = score(doc=1092,freq=2.0), product of:
            0.13932906 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.041336425 = queryNorm
            0.18620178 = fieldWeight in 1092, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1092)
      0.14285715 = coord(1/7)
    
    Abstract
    Bericht über: Levels of Reality, Seminar, Bolzano (Bozen) Italy, 26-28 September 2007: Ontologies, the knowledge organization systems now widely used in knowledge management applications, take their name from a branch of philosophy. Philosophical ontology deals with the kinds and the properties of what exists, and with how they can be described by categories like entity, attribute, or process. Readers familiar with facet analysis will notice some analogy with the "fundamental categories" of faceted classifications, and this resemblance is not accidental. Indeed, knowledge organization systems use conceptual structures that can be variously reconnected with the categories of ontology. Though having more practical purposes, the ontologies and classifications of information science can benefit of those of philosophy.
  8. Gnoli, C.; Ridi, C.R.: Unified Theory of Information, hypertextuality and levels of reality : without, within, and withal knowledge management (2014) 0.00
    0.0037061884 = product of:
      0.025943318 = sum of:
        0.025943318 = weight(_text_:management in 1796) [ClassicSimilarity], result of:
          0.025943318 = score(doc=1796,freq=2.0), product of:
            0.13932906 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.041336425 = queryNorm
            0.18620178 = fieldWeight in 1796, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1796)
      0.14285715 = coord(1/7)
    
  9. Gnoli, C.: Boundaries and overlaps of disciplines in Bloch's methodology of historical knowledge (2014) 0.00
    0.0024002206 = product of:
      0.016801544 = sum of:
        0.016801544 = product of:
          0.033603087 = sum of:
            0.033603087 = weight(_text_:22 in 1414) [ClassicSimilarity], result of:
              0.033603087 = score(doc=1414,freq=2.0), product of:
                0.14475311 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041336425 = queryNorm
                0.23214069 = fieldWeight in 1414, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1414)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  10. Lardera, M.; Gnoli, C.; Rolandi, C.; Trzmielewski, M.: Developing SciGator, a DDC-based library browsing tool (2017) 0.00
    0.0024002206 = product of:
      0.016801544 = sum of:
        0.016801544 = product of:
          0.033603087 = sum of:
            0.033603087 = weight(_text_:22 in 4144) [ClassicSimilarity], result of:
              0.033603087 = score(doc=4144,freq=2.0), product of:
                0.14475311 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041336425 = queryNorm
                0.23214069 = fieldWeight in 4144, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4144)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Content
    Beitrag eines Special Issue: ISKO-Italy: 8' Incontro ISKO Italia, Università di Bologna, 22 maggio 2017, Bologna, Italia.
  11. Gnoli, C.: Classifying phenomena : part 4: themes and rhemes (2018) 0.00
    0.0024002206 = product of:
      0.016801544 = sum of:
        0.016801544 = product of:
          0.033603087 = sum of:
            0.033603087 = weight(_text_:22 in 4152) [ClassicSimilarity], result of:
              0.033603087 = score(doc=4152,freq=2.0), product of:
                0.14475311 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041336425 = queryNorm
                0.23214069 = fieldWeight in 4152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4152)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    17. 2.2018 18:22:25
  12. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.00
    0.002000184 = product of:
      0.0140012875 = sum of:
        0.0140012875 = product of:
          0.028002575 = sum of:
            0.028002575 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
              0.028002575 = score(doc=3739,freq=2.0), product of:
                0.14475311 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041336425 = queryNorm
                0.19345059 = fieldWeight in 3739, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3739)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly