Search (53 results, page 1 of 3)

  • × theme_ss:"Visualisierung"
  1. Burnett, R.: How images think (2004) 0.02
    0.02208773 = product of:
      0.051538035 = sum of:
        0.010377328 = weight(_text_:management in 3884) [ClassicSimilarity], result of:
          0.010377328 = score(doc=3884,freq=2.0), product of:
            0.13932906 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.041336425 = queryNorm
            0.07448071 = fieldWeight in 3884, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.015625 = fieldNorm(doc=3884)
        0.03388888 = weight(_text_:europe in 3884) [ClassicSimilarity], result of:
          0.03388888 = score(doc=3884,freq=2.0), product of:
            0.25178367 = queryWeight, product of:
              6.091085 = idf(docFreq=271, maxDocs=44218)
              0.041336425 = queryNorm
            0.13459523 = fieldWeight in 3884, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.091085 = idf(docFreq=271, maxDocs=44218)
              0.015625 = fieldNorm(doc=3884)
        0.007271826 = product of:
          0.014543652 = sum of:
            0.014543652 = weight(_text_:studies in 3884) [ClassicSimilarity], result of:
              0.014543652 = score(doc=3884,freq=2.0), product of:
                0.16494368 = queryWeight, product of:
                  3.9902744 = idf(docFreq=2222, maxDocs=44218)
                  0.041336425 = queryNorm
                0.08817344 = fieldWeight in 3884, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9902744 = idf(docFreq=2222, maxDocs=44218)
                  0.015625 = fieldNorm(doc=3884)
          0.5 = coord(1/2)
      0.42857143 = coord(3/7)
    
    Footnote
    The sixth chapter looks at this interfacing of humans and machines and begins with a series of questions. The crucial one, to my mind, is this: "Does the distinction between humans and technology contribute to a lack of understanding of the continuous interrelationship and interdependence that exists between humans and all of their creations?" (p. 125) Burnett suggests that to use biological or mechanical views of the computer/mind (the computer as an input/output device) Limits our understanding of the ways in which we interact with machines. He thus points to the role of language, the conversations (including the one we held with machines when we were children) that seem to suggest a wholly different kind of relationship. Peer-to-peer communication (P2P), which is arguably the most widely used exchange mode of images today, is the subject of chapter seven. The issue here is whether P2P affects community building or community destruction. Burnett argues that the trope of community can be used to explore the flow of historical events that make up a continuum-from 17th-century letter writing to e-mail. In the new media-and Burnett uses the example of popular music which can be sampled, and reedited to create new compositions - the interpretive space is more flexible. Private networks can be set up, and the process of information retrieval (about which Burnett has already expended considerable space in the early chapters) involves a lot more of visualization. P2P networks, as Burnett points out, are about information management. They are about the harmony between machines and humans, and constitute a new ecology of communications. Turning to computer games, Burnett looks at the processes of interaction, experience, and reconstruction in simulated artificial life worlds, animations, and video images. For Burnett (like Andrew Darley, 2000 and Richard Doyle, 2003) the interactivity of the new media games suggests a greater degree of engagement with imageworlds. Today many facets of looking, listening, and gazing can be turned into aesthetic forms with the new media. Digital technology literally reanimates the world, as Burnett demonstrates in bis concluding chapter. Burnett concludes that images no longer simply represent the world-they shape our very interaction with it; they become the foundation for our understanding the spaces, places, and historical moments that we inhabit. Burnett concludes his book with the suggestion that intelligence is now a distributed phenomenon (here closely paralleling Katherine Hayles' argument that subjectivity is dispersed through the cybernetic circuit, 1999). There is no one center of information or knowledge. Intersections of human creativity, work, and connectivity "spread" (Burnett's term) "intelligence through the use of mediated devices and images, as well as sounds" (p. 221).
    Burnett's work is a useful basic primer an the new media. One of the chief attractions here is his clear language, devoid of the jargon of either computer sciences or advanced critical theory. This makes How Images Think an accessible introduction to digital cultures. Burnett explores the impact of the new technologies an not just image-making but an image-effects, and the ways in which images constitute our ecologies of identity, communication, and subject-hood. While some of the sections seem a little too basic (especially where he speaks about the ways in which we constitute an object as an object of art, see above), especially in the wake of reception theory, it still remains a starting point for those interested in cultural studies of the new media. The Gase Burnett makes out for the transformation of the ways in which we look at images has been strengthened by his attention to the history of this transformation-from photography through television and cinema and now to immersive virtual reality systems. Joseph Koemer (2004) has pointed out that the iconoclasm of early modern Europe actually demonstrates how idolatory was integral to the image-breakers' core belief. As Koerner puts it, "images never go away ... they persist and function by being perpetually destroyed" (p. 12). Burnett, likewise, argues that images in new media are reformed to suit new contexts of meaning-production-even when they appear to be destroyed. Images are recast, and the degree of their realism (or fantasy) heightened or diminished-but they do not "go away." Images do think, but-if I can parse Burnett's entire work-they think with, through, and in human intelligence, emotions, and intuitions. Images are uncanny-they are both us and not-us, ours and not-ours. There is, surprisingly, one factual error. Burnett claims that Myron Kreuger pioneered the term "virtual reality." To the best of my knowledge, it was Jaron Lanier who did so (see Featherstone & Burrows, 1998 [1995], p. 5)."
  2. Osinska, V.; Bala, P.: New methods for visualization and improvement of classification schemes : the case of computer science (2010) 0.02
    0.019933209 = product of:
      0.06976623 = sum of:
        0.052964687 = weight(_text_:case in 3693) [ClassicSimilarity], result of:
          0.052964687 = score(doc=3693,freq=2.0), product of:
            0.18173204 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.041336425 = queryNorm
            0.29144385 = fieldWeight in 3693, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=3693)
        0.016801544 = product of:
          0.033603087 = sum of:
            0.033603087 = weight(_text_:22 in 3693) [ClassicSimilarity], result of:
              0.033603087 = score(doc=3693,freq=2.0), product of:
                0.14475311 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041336425 = queryNorm
                0.23214069 = fieldWeight in 3693, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3693)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Date
    22. 7.2010 19:36:46
  3. Choi, I.: Visualizations of cross-cultural bibliographic classification : comparative studies of the Korean Decimal Classification and the Dewey Decimal Classification (2017) 0.02
    0.017804801 = product of:
      0.062316805 = sum of:
        0.04413724 = weight(_text_:case in 3869) [ClassicSimilarity], result of:
          0.04413724 = score(doc=3869,freq=2.0), product of:
            0.18173204 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.041336425 = queryNorm
            0.24286987 = fieldWeight in 3869, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3869)
        0.018179566 = product of:
          0.03635913 = sum of:
            0.03635913 = weight(_text_:studies in 3869) [ClassicSimilarity], result of:
              0.03635913 = score(doc=3869,freq=2.0), product of:
                0.16494368 = queryWeight, product of:
                  3.9902744 = idf(docFreq=2222, maxDocs=44218)
                  0.041336425 = queryNorm
                0.22043361 = fieldWeight in 3869, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9902744 = idf(docFreq=2222, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3869)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    The changes in KO systems induced by sociocultural influences may include those in both classificatory principles and cultural features. The proposed study will examine the Korean Decimal Classification (KDC)'s adaptation of the Dewey Decimal Classification (DDC) by comparing the two systems. This case manifests the sociocultural influences on KOSs in a cross-cultural context. Therefore, the study aims at an in-depth investigation of sociocultural influences by situating a KOS in a cross-cultural environment and examining the dynamics between two classification systems designed to organize information resources in two distinct sociocultural contexts. As a preceding stage of the comparison, the analysis was conducted on the changes that result from the meeting of different sociocultural feature in a descriptive method. The analysis aims to identify variations between the two schemes in comparison of the knowledge structures of the two classifications, in terms of the quantity of class numbers that represent concepts and their relationships in each of the individual main classes. The most effective analytic strategy to show the patterns of the comparison was visualizations of similarities and differences between the two systems. Increasing or decreasing tendencies in the class through various editions were analyzed. Comparing the compositions of the main classes and distributions of concepts in the KDC and DDC discloses the differences in their knowledge structures empirically. This phase of quantitative analysis and visualizing techniques generates empirical evidence leading to interpretation.
  4. Trunk, D.: Semantische Netze in Informationssystemen : Verbesserung der Suche durch Interaktion und Visualisierung (2005) 0.02
    0.015977843 = product of:
      0.05592245 = sum of:
        0.036320645 = weight(_text_:management in 2500) [ClassicSimilarity], result of:
          0.036320645 = score(doc=2500,freq=2.0), product of:
            0.13932906 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.041336425 = queryNorm
            0.2606825 = fieldWeight in 2500, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2500)
        0.019601801 = product of:
          0.039203603 = sum of:
            0.039203603 = weight(_text_:22 in 2500) [ClassicSimilarity], result of:
              0.039203603 = score(doc=2500,freq=2.0), product of:
                0.14475311 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041336425 = queryNorm
                0.2708308 = fieldWeight in 2500, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2500)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Semantische Netze unterstützen den Suchvorgang im Information Retrieval. Sie bestehen aus relationierten Begriffen und helfen dem Nutzer das richtige Vokabular zur Fragebildung zu finden. Eine leicht und intuitiv erfassbare Darstellung und eine interaktive Bedienungsmöglichkeit optimieren den Suchprozess mit der Begriffsstruktur. Als Interaktionsform bietet sich Hy-pertext mit dem etablierte Point- und Klickverfahren an. Eine Visualisierung zur Unterstützung kognitiver Fähigkeiten kann durch eine Darstellung der Informationen mit Hilfe von Punkten und Linien erfolgen. Vorgestellt wer-den die Anwendungsbeispiele Wissensnetz im Brockhaus multimedial, WordSurfer der Firma BiblioMondo, SpiderSearch der Firma BOND und Topic Maps Visualization in dandelon.com und im Portal Informationswis-senschaft der Firma AGI - Information Management Consultants.
    Date
    30. 1.2007 18:22:41
  5. Graphic details : a scientific study of the importance of diagrams to science (2016) 0.01
    0.013100703 = product of:
      0.04585246 = sum of:
        0.03745169 = weight(_text_:case in 3035) [ClassicSimilarity], result of:
          0.03745169 = score(doc=3035,freq=4.0), product of:
            0.18173204 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.041336425 = queryNorm
            0.20608193 = fieldWeight in 3035, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3035)
        0.008400772 = product of:
          0.016801544 = sum of:
            0.016801544 = weight(_text_:22 in 3035) [ClassicSimilarity], result of:
              0.016801544 = score(doc=3035,freq=2.0), product of:
                0.14475311 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041336425 = queryNorm
                0.116070345 = fieldWeight in 3035, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3035)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    A PICTURE is said to be worth a thousand words. That metaphor might be expected to pertain a fortiori in the case of scientific papers, where a figure can brilliantly illuminate an idea that might otherwise be baffling. Papers with figures in them should thus be easier to grasp than those without. They should therefore reach larger audiences and, in turn, be more influential simply by virtue of being more widely read. But are they?
    Content
    As the team describe in a paper posted (http://arxiv.org/abs/1605.04951) on arXiv, they found that figures did indeed matter-but not all in the same way. An average paper in PubMed Central has about one diagram for every three pages and gets 1.67 citations. Papers with more diagrams per page and, to a lesser extent, plots per page tended to be more influential (on average, a paper accrued two more citations for every extra diagram per page, and one more for every extra plot per page). By contrast, including photographs and equations seemed to decrease the chances of a paper being cited by others. That agrees with a study from 2012, whose authors counted (by hand) the number of mathematical expressions in over 600 biology papers and found that each additional equation per page reduced the number of citations a paper received by 22%. This does not mean that researchers should rush to include more diagrams in their next paper. Dr Howe has not shown what is behind the effect, which may merely be one of correlation, rather than causation. It could, for example, be that papers with lots of diagrams tend to be those that illustrate new concepts, and thus start a whole new field of inquiry. Such papers will certainly be cited a lot. On the other hand, the presence of equations really might reduce citations. Biologists (as are most of those who write and read the papers in PubMed Central) are notoriously mathsaverse. If that is the case, looking in a physics archive would probably produce a different result.
  6. Beagle, D.: Visualizing keyword distribution across multidisciplinary c-space (2003) 0.01
    0.011973777 = product of:
      0.041908216 = sum of:
        0.026482344 = weight(_text_:case in 1202) [ClassicSimilarity], result of:
          0.026482344 = score(doc=1202,freq=2.0), product of:
            0.18173204 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.041336425 = queryNorm
            0.14572193 = fieldWeight in 1202, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1202)
        0.015425872 = product of:
          0.030851744 = sum of:
            0.030851744 = weight(_text_:studies in 1202) [ClassicSimilarity], result of:
              0.030851744 = score(doc=1202,freq=4.0), product of:
                0.16494368 = queryWeight, product of:
                  3.9902744 = idf(docFreq=2222, maxDocs=44218)
                  0.041336425 = queryNorm
                0.18704411 = fieldWeight in 1202, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.9902744 = idf(docFreq=2222, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1202)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    But what happens to this awareness in a digital library? Can discursive formations be represented in cyberspace, perhaps through diagrams in a visualization interface? And would such a schema be helpful to a digital library user? To approach this question, it is worth taking a moment to reconsider what Radford is looking at. First, he looks at titles to see how the books cluster. To illustrate, I scanned one hundred books on the shelves of a college library under subclass HT 101-395, defined by the LCC subclass caption as Urban groups. The City. Urban sociology. Of the first 100 titles in this sequence, fifty included the word "urban" or variants (e.g. "urbanization"). Another thirty-five used the word "city" or variants. These keywords appear to mark their titles as the heart of this discursive formation. The scattering of titles not using "urban" or "city" used related terms such as "town," "community," or in one case "skyscrapers." So we immediately see some empirical correlation between keywords and classification. But we also see a problem with the commonly used search technique of title-keyword. A student interested in urban studies will want to know about this entire subclass, and may wish to browse every title available therein. A title-keyword search on "urban" will retrieve only half of the titles, while a search on "city" will retrieve just over a third. There will be no overlap, since no titles in this sample contain both words. The only place where both words appear in a common string is in the LCC subclass caption, but captions are not typically indexed in library Online Public Access Catalogs (OPACs). In a traditional library, this problem is mitigated when the student goes to the shelf looking for any one of the books and suddenly discovers a much wider selection than the keyword search had led him to expect. But in a digital library, the issue of non-retrieval can be more problematic, as studies have indicated. Micco and Popp reported that, in a study funded partly by the U.S. Department of Education, 65 of 73 unskilled users searching for material on U.S./Soviet foreign relations found some material but never realized they had missed a large percentage of what was in the database.
  7. Wu, K.-C.; Hsieh, T.-Y.: Affective choosing of clustering and categorization representations in e-book interfaces (2016) 0.01
    0.011412744 = product of:
      0.039944604 = sum of:
        0.025943318 = weight(_text_:management in 3070) [ClassicSimilarity], result of:
          0.025943318 = score(doc=3070,freq=2.0), product of:
            0.13932906 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.041336425 = queryNorm
            0.18620178 = fieldWeight in 3070, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3070)
        0.0140012875 = product of:
          0.028002575 = sum of:
            0.028002575 = weight(_text_:22 in 3070) [ClassicSimilarity], result of:
              0.028002575 = score(doc=3070,freq=2.0), product of:
                0.14475311 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041336425 = queryNorm
                0.19345059 = fieldWeight in 3070, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3070)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 68(2016) no.3, S.265-285
  8. Osinska, V.; Kowalska, M.; Osinski, Z.: ¬The role of visualization in the shaping and exploration of the individual information space : part 1 (2018) 0.01
    0.011346022 = product of:
      0.079422146 = sum of:
        0.079422146 = sum of:
          0.051419575 = weight(_text_:studies in 4641) [ClassicSimilarity], result of:
            0.051419575 = score(doc=4641,freq=4.0), product of:
              0.16494368 = queryWeight, product of:
                3.9902744 = idf(docFreq=2222, maxDocs=44218)
                0.041336425 = queryNorm
              0.3117402 = fieldWeight in 4641, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.9902744 = idf(docFreq=2222, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4641)
          0.028002575 = weight(_text_:22 in 4641) [ClassicSimilarity], result of:
            0.028002575 = score(doc=4641,freq=2.0), product of:
              0.14475311 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.041336425 = queryNorm
              0.19345059 = fieldWeight in 4641, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4641)
      0.14285715 = coord(1/7)
    
    Abstract
    Studies on the state and structure of digital knowledge concerning science generally relate to macro and meso scales. Supported by visualizations, these studies can deliver knowledge about emerging scientific fields or collaboration between countries, scientific centers, or groups of researchers. Analyses of individual activities or single scientific career paths are rarely presented and discussed. The authors decided to fill this gap and developed a web application for visualizing the scientific output of particular researchers. This free software based on bibliographic data from local databases, provides six layouts for analysis. Researchers can see the dynamic characteristics of their own writing activity, the time and place of publication, and the thematic scope of research problems. They can also identify cooperation networks, and consequently, study the dependencies and regularities in their own scientific activity. The current article presents the results of a study of the application's usability and functionality as well as attempts to define different user groups. A survey about the interface was sent to select researchers employed at Nicolaus Copernicus University. The results were used to answer the question as to whether such a specialized visualization tool can significantly augment the individual information space of the contemporary researcher.
    Date
    21.12.2018 17:22:13
  9. Zhang, J.: TOFIR: A tool of facilitating information retrieval : introduce a visual retrieval model (2001) 0.01
    0.010377328 = product of:
      0.07264129 = sum of:
        0.07264129 = weight(_text_:management in 7711) [ClassicSimilarity], result of:
          0.07264129 = score(doc=7711,freq=2.0), product of:
            0.13932906 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.041336425 = queryNorm
            0.521365 = fieldWeight in 7711, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.109375 = fieldNorm(doc=7711)
      0.14285715 = coord(1/7)
    
    Source
    Information processing and management. 37(2001) no.4, S.639-657
  10. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.01
    0.00919453 = product of:
      0.06436171 = sum of:
        0.06436171 = sum of:
          0.03635913 = weight(_text_:studies in 5272) [ClassicSimilarity], result of:
            0.03635913 = score(doc=5272,freq=2.0), product of:
              0.16494368 = queryWeight, product of:
                3.9902744 = idf(docFreq=2222, maxDocs=44218)
                0.041336425 = queryNorm
              0.22043361 = fieldWeight in 5272, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.9902744 = idf(docFreq=2222, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5272)
          0.028002575 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
            0.028002575 = score(doc=5272,freq=2.0), product of:
              0.14475311 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.041336425 = queryNorm
              0.19345059 = fieldWeight in 5272, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5272)
      0.14285715 = coord(1/7)
    
    Abstract
    This article describes the latest development of a generic approach to detecting and visualizing emerging trends and transient patterns in scientific literature. The work makes substantial theoretical and methodological contributions to progressive knowledge domain visualization. A specialty is conceptualized and visualized as a time-variant duality between two fundamental concepts in information science: research fronts and intellectual bases. A research front is defined as an emergent and transient grouping of concepts and underlying research issues. The intellectual base of a research front is its citation and co-citation footprint in scientific literature - an evolving network of scientific publications cited by research-front concepts. Kleinberg's (2002) burst-detection algorithm is adapted to identify emergent research-front concepts. Freeman's (1979) betweenness centrality metric is used to highlight potential pivotal points of paradigm shift over time. Two complementary visualization views are designed and implemented: cluster views and time-zone views. The contributions of the approach are that (a) the nature of an intellectual base is algorithmically and temporally identified by emergent research-front terms, (b) the value of a co-citation cluster is explicitly interpreted in terms of research-front concepts, and (c) visually prominent and algorithmically detected pivotal points substantially reduce the complexity of a visualized network. The modeling and visualization process is implemented in CiteSpace II, a Java application, and applied to the analysis of two research fields: mass extinction (1981-2004) and terrorism (1990-2003). Prominent trends and pivotal points in visualized networks were verified in collaboration with domain experts, who are the authors of pivotal-point articles. Practical implications of the work are discussed. A number of challenges and opportunities for future studies are identified.
    Date
    22. 7.2006 16:11:05
  11. Oh, D.G.: Revision of the national classification system through cooperative efforts : a case of Korean Decimal Classification 6th Edition (KDC 6) (2018) 0.01
    0.008827448 = product of:
      0.061792135 = sum of:
        0.061792135 = weight(_text_:case in 4646) [ClassicSimilarity], result of:
          0.061792135 = score(doc=4646,freq=2.0), product of:
            0.18173204 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.041336425 = queryNorm
            0.34001783 = fieldWeight in 4646, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4646)
      0.14285715 = coord(1/7)
    
  12. Aris, A.; Shneiderman, B.; Qazvinian, V.; Radev, D.: Visual overviews for discovering key papers and influences across research fronts (2009) 0.01
    0.007566384 = product of:
      0.052964687 = sum of:
        0.052964687 = weight(_text_:case in 3156) [ClassicSimilarity], result of:
          0.052964687 = score(doc=3156,freq=2.0), product of:
            0.18173204 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.041336425 = queryNorm
            0.29144385 = fieldWeight in 3156, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=3156)
      0.14285715 = coord(1/7)
    
    Abstract
    Gaining a rapid overview of an emerging scientific topic, sometimes called research fronts, is an increasingly common task due to the growing amount of interdisciplinary collaboration. Visual overviews that show temporal patterns of paper publication and citation links among papers can help researchers and analysts to see the rate of growth of topics, identify key papers, and understand influences across subdisciplines. This article applies a novel network-visualization tool based on meaningful layouts of nodes to present research fronts and show citation links that indicate influences across research fronts. To demonstrate the value of two-dimensional layouts with multiple regions and user control of link visibility, we conducted a design-oriented, preliminary case study with 6 domain experts over a 4-month period. The main benefits were being able (a) to easily identify key papers and see the increasing number of papers within a research front, and (b) to quickly see the strength and direction of influence across related research fronts.
  13. Burkhard, R.A.: Impulse: using knowledge visualization in business process oriented knowledge infrastructures (2005) 0.01
    0.006419307 = product of:
      0.04493515 = sum of:
        0.04493515 = weight(_text_:management in 3032) [ClassicSimilarity], result of:
          0.04493515 = score(doc=3032,freq=6.0), product of:
            0.13932906 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.041336425 = queryNorm
            0.32251096 = fieldWeight in 3032, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3032)
      0.14285715 = coord(1/7)
    
    Abstract
    This article aims to stimulate research on business process oriented knowledge infrastructures by pointing to the power of visualizations. It claims that business process oriented knowledge infrastructure research is stuck and therefore needs to reinvent and revitalize itself with new impulses. One such stimulus is the use of visualization techniques in business process oriented knowledge infrastructures, with the aim to improve knowledge transfer, knowledge communication, and knowledge creation. First, this article presents an overview on related visualization research. Second, it proposes the Knowledge Visualization Framework as a theoretical backbone where business process oriented knowledge infrastructure research can anchor itself. The framework points to the key questions that need to be answered when visual methods are used in business process oriented knowledge infrastructures. Finally, the article compares the Tube Map Visualization with the Gantt Chart, and proves that the new format excels the traditional approach in regards to various tasks. The findings from the evaluation of 44 interviews indicates that the Project Tube Map is more effective for (1) drawing attention and keeping interest, (2) presenting overview and detail, (3) visualizing who is collaborating with whom, (4) motivating people to participate in the project, and (5) increasing recall. The results presented in this paper are important for researchers and practitioners in the fields of Knowledge Management, Knowledge Visualization, Project Management, and Visual Communication Sciences.
    Source
    Journal of universal knowledge management. 0(2005) no.2, S.170-188
  14. Leydesdorff, L.: Visualization of the citation impact environments of scientific journals : an online mapping exercise (2007) 0.01
    0.00630532 = product of:
      0.04413724 = sum of:
        0.04413724 = weight(_text_:case in 82) [ClassicSimilarity], result of:
          0.04413724 = score(doc=82,freq=2.0), product of:
            0.18173204 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.041336425 = queryNorm
            0.24286987 = fieldWeight in 82, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=82)
      0.14285715 = coord(1/7)
    
    Abstract
    Aggregated journal-journal citation networks based on the Journal Citation Reports 2004 of the Science Citation Index (5,968 journals) and the Social Science Citation Index (1,712 journals) are made accessible from the perspective of any of these journals. A vector-space model Is used for normalization, and the results are brought online at http://www.leydesdorff.net/jcr04 as input files for the visualization program Pajek. The user is thus able to analyze the citation environment in terms of links and graphs. Furthermore, the local impact of a journal is defined as its share of the total citations in the specific journal's citation environments; the vertical size of the nodes is varied proportionally to this citation impact. The horizontal size of each node can be used to provide the same information after correction for within-journal (self-)citations. In the "citing" environment, the equivalents of this measure can be considered as a citation activity index which maps how the relevant journal environment is perceived by the collective of authors of a given journal. As a policy application, the mechanism of Interdisciplinary developments among the sciences is elaborated for the case of nanotechnology journals.
  15. Cao, N.; Sun, J.; Lin, Y.-R.; Gotz, D.; Liu, S.; Qu, H.: FacetAtlas : Multifaceted visualization for rich text corpora (2010) 0.01
    0.00630532 = product of:
      0.04413724 = sum of:
        0.04413724 = weight(_text_:case in 3366) [ClassicSimilarity], result of:
          0.04413724 = score(doc=3366,freq=2.0), product of:
            0.18173204 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.041336425 = queryNorm
            0.24286987 = fieldWeight in 3366, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3366)
      0.14285715 = coord(1/7)
    
    Abstract
    Documents in rich text corpora usually contain multiple facets of information. For example, an article about a specific disease often consists of different facets such as symptom, treatment, cause, diagnosis, prognosis, and prevention. Thus, documents may have different relations based on different facets. Powerful search tools have been developed to help users locate lists of individual documents that are most related to specific keywords. However, there is a lack of effective analysis tools that reveal the multifaceted relations of documents within or cross the document clusters. In this paper, we present FacetAtlas, a multifaceted visualization technique for visually analyzing rich text corpora. FacetAtlas combines search technology with advanced visual analytical tools to convey both global and local patterns simultaneously. We describe several unique aspects of FacetAtlas, including (1) node cliques and multifaceted edges, (2) an optimized density map, and (3) automated opacity pattern enhancement for highlighting visual patterns, (4) interactive context switch between facets. In addition, we demonstrate the power of FacetAtlas through a case study that targets patient education in the health care domain. Our evaluation shows the benefits of this work, especially in support of complex multifaceted data analysis.
  16. Pfeffer, M.; Eckert, K.; Stuckenschmidt, H.: Visual analysis of classification systems and library collections (2008) 0.01
    0.0059299017 = product of:
      0.04150931 = sum of:
        0.04150931 = weight(_text_:management in 317) [ClassicSimilarity], result of:
          0.04150931 = score(doc=317,freq=2.0), product of:
            0.13932906 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.041336425 = queryNorm
            0.29792285 = fieldWeight in 317, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0625 = fieldNorm(doc=317)
      0.14285715 = coord(1/7)
    
    Abstract
    In this demonstration we present a visual analysis approach that addresses both developers and users of hierarchical classification systems. The approach supports an intuitive understanding of the structure and current use in relation to a specific collection. We will also demonstrate its application for the development and management of library collections.
  17. Information visualization in data mining and knowledge discovery (2002) 0.01
    0.005793221 = product of:
      0.020276273 = sum of:
        0.014675758 = weight(_text_:management in 1789) [ClassicSimilarity], result of:
          0.014675758 = score(doc=1789,freq=4.0), product of:
            0.13932906 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.041336425 = queryNorm
            0.10533164 = fieldWeight in 1789, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.005600515 = product of:
          0.01120103 = sum of:
            0.01120103 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
              0.01120103 = score(doc=1789,freq=2.0), product of:
                0.14475311 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041336425 = queryNorm
                0.07738023 = fieldWeight in 1789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1789)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
    Series
    Morgan Kaufmann series in data management systems
  18. Xiaoyue M.; Cahier, J.-P.: Iconic categorization with knowledge-based "icon systems" can improve collaborative KM (2011) 0.01
    0.0052413424 = product of:
      0.036689393 = sum of:
        0.036689393 = weight(_text_:management in 4837) [ClassicSimilarity], result of:
          0.036689393 = score(doc=4837,freq=4.0), product of:
            0.13932906 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.041336425 = queryNorm
            0.2633291 = fieldWeight in 4837, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4837)
      0.14285715 = coord(1/7)
    
    Abstract
    Icon system could represent an efficient solution for collective iconic categorization of knowledge by providing graphical interpretation. Their pictorial characters assist visualizing the structure of text to become more understandable beyond vocabulary obstacle. In this paper we are proposing a Knowledge Engineering (KM) based iconic representation approach. We assume that these systematic icons improve collective knowledge management. Meanwhile, text (constructed under our knowledge management model - Hypertopic) helps to reduce the diversity of graphical understanding belonging to different users. This "position paper" also prepares to demonstrate our hypothesis by an "iconic social tagging" experiment which is to be accomplished in 2011 with UTT students. We describe the "socio semantic web" information portal involved in this project, and a part of the icons already designed for this experiment in Sustainability field. We have reviewed existing theoretical works on icons from various origins, which can be used to lay the foundation of robust "icons systems".
  19. Trunk, D.: Inhaltliche Semantische Netze in Informationssystemen : Verbesserung der Suche durch Interaktion und Visualisierung (2005) 0.01
    0.005188664 = product of:
      0.036320645 = sum of:
        0.036320645 = weight(_text_:management in 790) [ClassicSimilarity], result of:
          0.036320645 = score(doc=790,freq=2.0), product of:
            0.13932906 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.041336425 = queryNorm
            0.2606825 = fieldWeight in 790, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0546875 = fieldNorm(doc=790)
      0.14285715 = coord(1/7)
    
    Abstract
    Semantische Netze unterstützen den Suchvorgang im Information Retrieval. Sie bestehen aus relationierten Begriffen und helfen dem Nutzer, das richtige Vokabular zur Fragebildung zu finden. Eine leicht und intuitiv erfassbare Darstellung und eine interaktive Bedienungsmöglichkeit optimieren den Suchprozess mit der Begriffsstruktur. Als Interaktionsform bietet sich Hypertext mit seinem Point- und Klickverfahren an. Die Visualisierung erfolgt als Netzstruktur aus Punkten und Linien. Es werden die Anwendungsbeispiele Wissensnetz im Brockhaus multimedial, WordSurfer der Firma BiblioMondo, SpiderSearch der Firma BOND und Topic Maps Visualization in dandelon.com und im Portal Informationswissenschaft der Firma AGI - Information Management Consultants vorgestellt.
  20. Visual thesaurus (2005) 0.01
    0.0050442563 = product of:
      0.03530979 = sum of:
        0.03530979 = weight(_text_:case in 1292) [ClassicSimilarity], result of:
          0.03530979 = score(doc=1292,freq=2.0), product of:
            0.18173204 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.041336425 = queryNorm
            0.1942959 = fieldWeight in 1292, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03125 = fieldNorm(doc=1292)
      0.14285715 = coord(1/7)
    
    Content
    Traditional print reference guides often have two methods of finding information: an order (alphabetical for dictionaries and encyclopedias, by subject hierarchy in the case of thesauri) and indices (ordered lists, with a more complete listing of words and concepts, which refers back to original content from the main body of the book). A user of such traditional print reference guides who is looking for information will either browse through the ordered information in the main body of the reference book, or scan through the indices to find what is necessary. The advent of the computer allows for much more rapid electronic searches of the same information, and for multiple layers of indices. Users can either search through information by entering a keyword, or users can browse through the information through an outline index, which represents the information contained in the main body of the data. There are two traditional user interfaces for such applications. First, the user may type text into a search field and in response, a list of results is returned to the user. The user then selects a returned entry and may page through the resulting information. Alternatively, the user may choose from a list of words from an index. For example, software thesaurus applications, in which a user attempts to find synonyms, antonyms, homonyms, etc. for a selected word, are usually implemented using the conventional search and presentation techniques discussed above. The presentation of results only allows for a one-dimensional order of data at any one time. In addition, only a limited number of results can be shown at once, and selecting a result inevitably leads to another page-if the result is not satisfactory, the users must search again. Finally, it is difficult to present information about the manner in which the search results are related, or to present quantitative information about the results without causing confusion. Therefore, there exists a need for a multidimensional graphical display of information, in particular with respect to information relating to the meaning of words and their relationships to other words. There further exists a need to present large amounts of information in a way that can be manipulated by the user, without the user losing his place. And there exists a need for more fluid, intuitive and powerful thesaurus functionality that invites the exploration of language.

Languages

  • e 46
  • d 6
  • a 1
  • More… Less…

Types

  • a 40
  • el 9
  • m 7
  • x 4
  • s 2
  • b 1
  • More… Less…