Search (52 results, page 1 of 3)

  • × theme_ss:"Data Mining"
  1. Hereth, J.; Stumme, G.; Wille, R.; Wille, U.: Conceptual knowledge discovery and data analysis (2000) 0.04
    0.03684464 = product of:
      0.07368928 = sum of:
        0.050073773 = weight(_text_:representation in 5083) [ClassicSimilarity], result of:
          0.050073773 = score(doc=5083,freq=2.0), product of:
            0.19700786 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.042818543 = queryNorm
            0.25417143 = fieldWeight in 5083, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5083)
        0.023615506 = product of:
          0.07084651 = sum of:
            0.07084651 = weight(_text_:theory in 5083) [ClassicSimilarity], result of:
              0.07084651 = score(doc=5083,freq=6.0), product of:
                0.1780563 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.042818543 = queryNorm
                0.39788827 = fieldWeight in 5083, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5083)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin
  2. Lihui, C.; Lian, C.W.: Using Web structure and summarisation techniques for Web content mining (2005) 0.02
    0.02168258 = product of:
      0.08673032 = sum of:
        0.08673032 = weight(_text_:representation in 1046) [ClassicSimilarity], result of:
          0.08673032 = score(doc=1046,freq=6.0), product of:
            0.19700786 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.042818543 = queryNorm
            0.44023782 = fieldWeight in 1046, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1046)
      0.25 = coord(1/4)
    
    Abstract
    The dynamic nature and size of the Internet can result in difficulty finding relevant information. Most users typically express their information need via short queries to search engines and they often have to physically sift through the search results based on relevance ranking set by the search engines, making the process of relevance judgement time-consuming. In this paper, we describe a novel representation technique which makes use of the Web structure together with summarisation techniques to better represent knowledge in actual Web Documents. We named the proposed technique as Semantic Virtual Document (SVD). We will discuss how the proposed SVD can be used together with a suitable clustering algorithm to achieve an automatic content-based categorization of similar Web Documents. The auto-categorization facility as well as a "Tree-like" Graphical User Interface (GUI) for post-retrieval document browsing enhances the relevance judgement process for Internet users. Furthermore, we will introduce how our cluster-biased automatic query expansion technique can be used to overcome the ambiguity of short queries typically given by users. We will outline our experimental design to evaluate the effectiveness of the proposed SVD for representation and present a prototype called iSEARCH (Intelligent SEarch And Review of Cluster Hierarchy) for Web content mining. Our results confirm, quantify and extend previous research using Web structure and summarisation techniques, introducing novel techniques for knowledge representation to enhance Web content mining.
  3. Information visualization in data mining and knowledge discovery (2002) 0.02
    0.019336069 = product of:
      0.038672138 = sum of:
        0.020029508 = weight(_text_:representation in 1789) [ClassicSimilarity], result of:
          0.020029508 = score(doc=1789,freq=2.0), product of:
            0.19700786 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.042818543 = queryNorm
            0.10166857 = fieldWeight in 1789, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.01864263 = product of:
          0.027963944 = sum of:
            0.016361302 = weight(_text_:theory in 1789) [ClassicSimilarity], result of:
              0.016361302 = score(doc=1789,freq=2.0), product of:
                0.1780563 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.042818543 = queryNorm
                0.09188836 = fieldWeight in 1789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1789)
            0.011602643 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
              0.011602643 = score(doc=1789,freq=2.0), product of:
                0.14994325 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042818543 = queryNorm
                0.07738023 = fieldWeight in 1789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1789)
          0.6666667 = coord(2/3)
      0.5 = coord(2/4)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    Rez. in: JASIST 54(2003) no.9, S.905-906 (C.A. Badurek): "Visual approaches for knowledge discovery in very large databases are a prime research need for information scientists focused an extracting meaningful information from the ever growing stores of data from a variety of domains, including business, the geosciences, and satellite and medical imagery. This work presents a summary of research efforts in the fields of data mining, knowledge discovery, and data visualization with the goal of aiding the integration of research approaches and techniques from these major fields. The editors, leading computer scientists from academia and industry, present a collection of 32 papers from contributors who are incorporating visualization and data mining techniques through academic research as well application development in industry and government agencies. Information Visualization focuses upon techniques to enhance the natural abilities of humans to visually understand data, in particular, large-scale data sets. It is primarily concerned with developing interactive graphical representations to enable users to more intuitively make sense of multidimensional data as part of the data exploration process. It includes research from computer science, psychology, human-computer interaction, statistics, and information science. Knowledge Discovery in Databases (KDD) most often refers to the process of mining databases for previously unknown patterns and trends in data. Data mining refers to the particular computational methods or algorithms used in this process. The data mining research field is most related to computational advances in database theory, artificial intelligence and machine learning. This work compiles research summaries from these main research areas in order to provide "a reference work containing the collection of thoughts and ideas of noted researchers from the fields of data mining and data visualization" (p. 8). It addresses these areas in three main sections: the first an data visualization, the second an KDD and model visualization, and the last an using visualization in the knowledge discovery process. The seven chapters of Part One focus upon methodologies and successful techniques from the field of Data Visualization. Hoffman and Grinstein (Chapter 2) give a particularly good overview of the field of data visualization and its potential application to data mining. An introduction to the terminology of data visualization, relation to perceptual and cognitive science, and discussion of the major visualization display techniques are presented. Discussion and illustration explain the usefulness and proper context of such data visualization techniques as scatter plots, 2D and 3D isosurfaces, glyphs, parallel coordinates, and radial coordinate visualizations. Remaining chapters present the need for standardization of visualization methods, discussion of user requirements in the development of tools, and examples of using information visualization in addressing research problems.
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
  4. Baeza-Yates, R.; Hurtado, C.; Mendoza, M.: Improving search engines by query clustering (2007) 0.02
    0.017525818 = product of:
      0.07010327 = sum of:
        0.07010327 = weight(_text_:representation in 601) [ClassicSimilarity], result of:
          0.07010327 = score(doc=601,freq=2.0), product of:
            0.19700786 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.042818543 = queryNorm
            0.35583997 = fieldWeight in 601, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0546875 = fieldNorm(doc=601)
      0.25 = coord(1/4)
    
    Abstract
    In this paper, we present a framework for clustering Web search engine queries whose aim is to identify groups of queries used to search for similar information on the Web. The framework is based on a novel term vector model of queries that integrates user selections and the content of selected documents extracted from the logs of a search engine. The query representation obtained allows us to treat query clustering similarly to standard document clustering. We study the application of the clustering framework to two problems: relevance ranking boosting and query recommendation. Finally, we evaluate with experiments the effectiveness of our approach.
  5. Amir, A.; Feldman, R.; Kashi, R.: ¬A new and versatile method for association generation (1997) 0.02
    0.015540405 = product of:
      0.06216162 = sum of:
        0.06216162 = product of:
          0.09324243 = sum of:
            0.046831857 = weight(_text_:29 in 1270) [ClassicSimilarity], result of:
              0.046831857 = score(doc=1270,freq=2.0), product of:
                0.15062225 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.042818543 = queryNorm
                0.31092256 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1270)
            0.04641057 = weight(_text_:22 in 1270) [ClassicSimilarity], result of:
              0.04641057 = score(doc=1270,freq=2.0), product of:
                0.14994325 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042818543 = queryNorm
                0.30952093 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1270)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Date
    5. 4.1996 15:29:15
    Source
    Information systems. 22(1997) nos.5/6, S.333-347
  6. Galal, G.M.; Cook, D.J.; Holder, L.B.: Exploiting parallelism in a structural scientific discovery system to improve scalability (1999) 0.02
    0.015022131 = product of:
      0.060088523 = sum of:
        0.060088523 = weight(_text_:representation in 2952) [ClassicSimilarity], result of:
          0.060088523 = score(doc=2952,freq=2.0), product of:
            0.19700786 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.042818543 = queryNorm
            0.3050057 = fieldWeight in 2952, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=2952)
      0.25 = coord(1/4)
    
    Abstract
    The large amount of data collected today is quickly overwhelming researchers' abilities to interpret the data and discover interesting patterns. Knowledge discovery and data mining approaches hold the potential to automate the interpretation process, but these approaches frequently utilize computationally expensive algorithms. In particular, scientific discovery systems focus on the utilization of richer data representation, sometimes without regard for scalability. This research investigates approaches for scaling a particular knowledge discovery in databases (KDD) system, SUBDUE, using parallel and distributed resources. SUBDUE has been used to discover interesting and repetitive concepts in graph-based databases from a variety of domains, but requires a substantial amount of processing time. Experiments that demonstrate scalability of parallel versions of the SUBDUE system are performed using CAD circuit databases and artificially-generated databases, and potential achievements and obstacles are discussed
  7. Wong, M.L.; Leung, K.S.; Cheng, J.C.Y.: Discovering knowledge from noisy databases using genetic programming (2000) 0.02
    0.015022131 = product of:
      0.060088523 = sum of:
        0.060088523 = weight(_text_:representation in 4863) [ClassicSimilarity], result of:
          0.060088523 = score(doc=4863,freq=2.0), product of:
            0.19700786 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.042818543 = queryNorm
            0.3050057 = fieldWeight in 4863, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=4863)
      0.25 = coord(1/4)
    
    Abstract
    In data mining, we emphasize the need for learning from huge, incomplete, and imperfect data sets. To handle noise in the problem domain, existing learning systems avoid overfitting the imperfect training examples by excluding insignificant patterns. The problem is that these systems use a limiting attribute-value language for representing the training examples and the induced knowledge. Moreover, some important patterns are ignored because they are statistically insignificant. In this article, we present a framework that combines genetic programming and inductive logic programming to induce knowledge represented in various knowledge representation formalisms from noisy databases (LOGENPRO). Moreover, the system is applied to one real-life medical database. The knowledge discovered provides insights to and allows better understanding of the medical domains
  8. Kraker, P.; Kittel, C,; Enkhbayar, A.: Open Knowledge Maps : creating a visual interface to the world's scientific knowledge based on natural language processing (2016) 0.02
    0.015022131 = product of:
      0.060088523 = sum of:
        0.060088523 = weight(_text_:representation in 3205) [ClassicSimilarity], result of:
          0.060088523 = score(doc=3205,freq=2.0), product of:
            0.19700786 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.042818543 = queryNorm
            0.3050057 = fieldWeight in 3205, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=3205)
      0.25 = coord(1/4)
    
    Abstract
    The goal of Open Knowledge Maps is to create a visual interface to the world's scientific knowledge. The base for this visual interface consists of so-called knowledge maps, which enable the exploration of existing knowledge and the discovery of new knowledge. Our open source knowledge mapping software applies a mixture of summarization techniques and similarity measures on article metadata, which are iteratively chained together. After processing, the representation is saved in a database for use in a web visualization. In the future, we want to create a space for collective knowledge mapping that brings together individuals and communities involved in exploration and discovery. We want to enable people to guide each other in their discovery by collaboratively annotating and modifying the automatically created maps.
  9. Wongthontham, P.; Abu-Salih, B.: Ontology-based approach for semantic data extraction from social big data : state-of-the-art and research directions (2018) 0.02
    0.015022131 = product of:
      0.060088523 = sum of:
        0.060088523 = weight(_text_:representation in 4097) [ClassicSimilarity], result of:
          0.060088523 = score(doc=4097,freq=2.0), product of:
            0.19700786 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.042818543 = queryNorm
            0.3050057 = fieldWeight in 4097, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=4097)
      0.25 = coord(1/4)
    
    Abstract
    A challenge of managing and extracting useful knowledge from social media data sources has attracted much attention from academic and industry. To address this challenge, semantic analysis of textual data is focused in this paper. We propose an ontology-based approach to extract semantics of textual data and define the domain of data. In other words, we semantically analyse the social data at two levels i.e. the entity level and the domain level. We have chosen Twitter as a social channel challenge for a purpose of concept proof. Domain knowledge is captured in ontologies which are then used to enrich the semantics of tweets provided with specific semantic conceptual representation of entities that appear in the tweets. Case studies are used to demonstrate this approach. We experiment and evaluate our proposed approach with a public dataset collected from Twitter and from the politics domain. The ontology-based approach leverages entity extraction and concept mappings in terms of quantity and accuracy of concept identification.
  10. Hofstede, A.H.M. ter; Proper, H.A.; Van der Weide, T.P.: Exploiting fact verbalisation in conceptual information modelling (1997) 0.01
    0.0135978535 = product of:
      0.054391414 = sum of:
        0.054391414 = product of:
          0.08158712 = sum of:
            0.040977873 = weight(_text_:29 in 2908) [ClassicSimilarity], result of:
              0.040977873 = score(doc=2908,freq=2.0), product of:
                0.15062225 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.042818543 = queryNorm
                0.27205724 = fieldWeight in 2908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2908)
            0.04060925 = weight(_text_:22 in 2908) [ClassicSimilarity], result of:
              0.04060925 = score(doc=2908,freq=2.0), product of:
                0.14994325 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042818543 = queryNorm
                0.2708308 = fieldWeight in 2908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2908)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Date
    5. 4.1996 15:29:15
    Source
    Information systems. 22(1997) nos.5/6, S.349-385
  11. Wei, C.-P.; Lee, Y.-H.; Chiang, Y.-S.; Chen, C.-T.; Yang, C.C.C.: Exploiting temporal characteristics of features for effectively discovering event episodes from news corpora (2014) 0.01
    0.012518443 = product of:
      0.050073773 = sum of:
        0.050073773 = weight(_text_:representation in 1225) [ClassicSimilarity], result of:
          0.050073773 = score(doc=1225,freq=2.0), product of:
            0.19700786 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.042818543 = queryNorm
            0.25417143 = fieldWeight in 1225, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1225)
      0.25 = coord(1/4)
    
    Abstract
    An organization performing environmental scanning generally monitors or tracks various events concerning its external environment. One of the major resources for environmental scanning is online news documents, which are readily accessible on news websites or infomediaries. However, the proliferation of the World Wide Web, which increases information sources and improves information circulation, has vastly expanded the amount of information to be scanned. Thus, it is essential to develop an effective event episode discovery mechanism to organize news documents pertaining to an event of interest. In this study, we propose two new metrics, Term Frequency × Inverse Document FrequencyTempo (TF×IDFTempo) and TF×Enhanced-IDFTempo, and develop a temporal-based event episode discovery (TEED) technique that uses the proposed metrics for feature selection and document representation. Using a traditional TF×IDF-based hierarchical agglomerative clustering technique as a performance benchmark, our empirical evaluation reveals that the proposed TEED technique outperforms its benchmark, as measured by cluster recall and cluster precision. In addition, the use of TF×Enhanced-IDFTempo significantly improves the effectiveness of event episode discovery when compared with the use of TF×IDFTempo.
  12. Bell, D.A.; Guan, J.W.: Computational methods for rough classification and discovery (1998) 0.01
    0.008265426 = product of:
      0.033061706 = sum of:
        0.033061706 = product of:
          0.09918512 = sum of:
            0.09918512 = weight(_text_:theory in 2909) [ClassicSimilarity], result of:
              0.09918512 = score(doc=2909,freq=6.0), product of:
                0.1780563 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.042818543 = queryNorm
                0.55704355 = fieldWeight in 2909, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2909)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Rough set theory is a mathematical tool to deal with vagueness and uncertainty. To apply the theory, it needs to be associated with efficient and effective computational methods. A relation can be used to represent a decison table for use in decision making. By using this kind of table, rough set theory can be applied successfully to rough classification and knowledge discovery. Presents computational methods for using rough sets to identify classes in datasets, finding dependencies in relations, and discovering rules which are hidden in databases. Illustrates the methods with a running example from a database of car test results
  13. Budzik, J.; Hammond, K.J.; Birnbaum, L.: Information access in context (2001) 0.01
    0.0068296455 = product of:
      0.027318582 = sum of:
        0.027318582 = product of:
          0.081955746 = sum of:
            0.081955746 = weight(_text_:29 in 3835) [ClassicSimilarity], result of:
              0.081955746 = score(doc=3835,freq=2.0), product of:
                0.15062225 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.042818543 = queryNorm
                0.5441145 = fieldWeight in 3835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3835)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    29. 3.2002 17:31:17
  14. Chowdhury, G.G.: Template mining for information extraction from digital documents (1999) 0.01
    0.006768209 = product of:
      0.027072836 = sum of:
        0.027072836 = product of:
          0.0812185 = sum of:
            0.0812185 = weight(_text_:22 in 4577) [ClassicSimilarity], result of:
              0.0812185 = score(doc=4577,freq=2.0), product of:
                0.14994325 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042818543 = queryNorm
                0.5416616 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4577)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    2. 4.2000 18:01:22
  15. Lingras, P.J.; Yao, Y.Y.: Data mining using extensions of the rough set model (1998) 0.01
    0.0067486926 = product of:
      0.02699477 = sum of:
        0.02699477 = product of:
          0.08098431 = sum of:
            0.08098431 = weight(_text_:theory in 2910) [ClassicSimilarity], result of:
              0.08098431 = score(doc=2910,freq=4.0), product of:
                0.1780563 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.042818543 = queryNorm
                0.45482418 = fieldWeight in 2910, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2910)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Examines basic issues of data mining using the theory of rough sets, which is a recent proposal for generalizing classical set theory. The Pawlak rough set model is based on the concept of an equivalence relation. A generalized rough set model need not be based on equivalence relation axioms. The Pawlak rough set model has been used for deriving deterministic as well as probabilistic rules froma complete database. Demonstrates that a generalised rough set model can be used for generating rules from incomplete databases. These rules are based on plausability functions proposed by Shafer. Discusses the importance of rule extraction from incomplete databases in data mining
  16. Witten, I.H.; Frank, E.: Data Mining : Praktische Werkzeuge und Techniken für das maschinelle Lernen (2000) 0.01
    0.005853982 = product of:
      0.023415929 = sum of:
        0.023415929 = product of:
          0.070247784 = sum of:
            0.070247784 = weight(_text_:29 in 6833) [ClassicSimilarity], result of:
              0.070247784 = score(doc=6833,freq=2.0), product of:
                0.15062225 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.042818543 = queryNorm
                0.46638384 = fieldWeight in 6833, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6833)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    27. 1.1996 10:29:55
  17. Keim, D.A.: Data Mining mit bloßem Auge (2002) 0.01
    0.005853982 = product of:
      0.023415929 = sum of:
        0.023415929 = product of:
          0.070247784 = sum of:
            0.070247784 = weight(_text_:29 in 1086) [ClassicSimilarity], result of:
              0.070247784 = score(doc=1086,freq=2.0), product of:
                0.15062225 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.042818543 = queryNorm
                0.46638384 = fieldWeight in 1086, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1086)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    31.12.1996 19:29:41
  18. Kruse, R.; Borgelt, C.: Suche im Datendschungel (2002) 0.01
    0.005853982 = product of:
      0.023415929 = sum of:
        0.023415929 = product of:
          0.070247784 = sum of:
            0.070247784 = weight(_text_:29 in 1087) [ClassicSimilarity], result of:
              0.070247784 = score(doc=1087,freq=2.0), product of:
                0.15062225 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.042818543 = queryNorm
                0.46638384 = fieldWeight in 1087, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1087)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    31.12.1996 19:29:41
  19. Wrobel, S.: Lern- und Entdeckungsverfahren (2002) 0.01
    0.005853982 = product of:
      0.023415929 = sum of:
        0.023415929 = product of:
          0.070247784 = sum of:
            0.070247784 = weight(_text_:29 in 1105) [ClassicSimilarity], result of:
              0.070247784 = score(doc=1105,freq=2.0), product of:
                0.15062225 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.042818543 = queryNorm
                0.46638384 = fieldWeight in 1105, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1105)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    31.12.1996 19:29:41
  20. KDD : techniques and applications (1998) 0.01
    0.0058013215 = product of:
      0.023205286 = sum of:
        0.023205286 = product of:
          0.069615856 = sum of:
            0.069615856 = weight(_text_:22 in 6783) [ClassicSimilarity], result of:
              0.069615856 = score(doc=6783,freq=2.0), product of:
                0.14994325 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042818543 = queryNorm
                0.46428138 = fieldWeight in 6783, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6783)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Footnote
    A special issue of selected papers from the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'97), held Singapore, 22-23 Feb 1997

Years

Languages

  • e 38
  • d 14

Types