Search (59 results, page 1 of 3)

  • × author_ss:"Chen, H."
  1. Chen, H.: Intelligence and security informatics : Introduction to the special topic issue (2005) 0.08
    0.076979935 = product of:
      0.15395987 = sum of:
        0.01657527 = weight(_text_:information in 3232) [ClassicSimilarity], result of:
          0.01657527 = score(doc=3232,freq=20.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.21466857 = fieldWeight in 3232, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3232)
        0.09272005 = weight(_text_:united in 3232) [ClassicSimilarity], result of:
          0.09272005 = score(doc=3232,freq=6.0), product of:
            0.24675635 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.043984205 = queryNorm
            0.37575546 = fieldWeight in 3232, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3232)
        0.04466456 = product of:
          0.08932912 = sum of:
            0.08932912 = weight(_text_:states in 3232) [ClassicSimilarity], result of:
              0.08932912 = score(doc=3232,freq=6.0), product of:
                0.24220218 = queryWeight, product of:
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.043984205 = queryNorm
                0.3688205 = fieldWeight in 3232, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3232)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    Making the Nation Safer: The Role of Science and Technology in Countering Terrorism The commitment of the scientific, engineering, and health communities to helping the United States and the world respond to security challenges became evident after September 11, 2001. The U.S. National Research Council's report an "Making the Nation Safer: The Role of Science and Technology in Countering Terrorism," (National Research Council, 2002, p. 1) explains the context of such a new commitment: Terrorism is a serious threat to the Security of the United States and indeed the world. The vulnerability of societies to terrorist attacks results in part from the proliferation of chemical, biological, and nuclear weapons of mass destruction, but it also is a consequence of the highly efficient and interconnected systems that we rely an for key services such as transportation, information, energy, and health care. The efficient functioning of these systems reflects great technological achievements of the past century, but interconnectedness within and across systems also means that infrastructures are vulnerable to local disruptions, which could lead to widespread or catastrophic failures. As terrorists seek to exploit these vulnerabilities, it is fitting that we harness the nation's exceptional scientific and technological capabilities to Counter terrorist threats. A committee of 24 of the leading scientific, engineering, medical, and policy experts in the United States conducted the study described in the report. Eight panels were separately appointed and asked to provide input to the committee. The panels included: (a) biological sciences, (b) chemical issues, (c) nuclear and radiological issues, (d) information technology, (e) transportation, (f) energy facilities, Cities, and fixed infrastructure, (g) behavioral, social, and institutional issues, and (h) systems analysis and systems engineering. The focus of the committee's work was to make the nation safer from emerging terrorist threats that sought to inflict catastrophic damage an the nation's people, its infrastructure, or its economy. The committee considered nine areas, each of which is discussed in a separate chapter in the report: nuclear and radiological materials, human and agricultural health systems, toxic chemicals and explosive materials, information technology, energy systems, transportation systems, Cities and fixed infrastructure, the response of people to terrorism, and complex and interdependent systems. The chapter an information technology (IT) is particularly relevant to this special issue. The report recommends that "a strategic long-term research and development agenda should be established to address three primary counterterrorismrelated areas in IT: information and network security, the IT needs of emergency responders, and information fusion and management" (National Research Council, 2002, pp. 11 -12). The MD in information and network security should include approaches and architectures for prevention, identification, and containment of cyber-intrusions and recovery from them. The R&D to address IT needs of emergency responders should include ensuring interoperability, maintaining and expanding communications capability during an emergency, communicating with the public during an emergency, and providing support for decision makers. The R&D in information fusion and management for the intelligence, law enforcement, and emergency response communities should include data mining, data integration, language technologies, and processing of image and audio data. Much of the research reported in this special issue is related to information fusion and management for homeland security.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.3, S.217-220
  2. Hu, D.; Kaza, S.; Chen, H.: Identifying significant facilitators of dark network evolution (2009) 0.07
    0.071969345 = product of:
      0.14393869 = sum of:
        0.007487943 = weight(_text_:information in 2753) [ClassicSimilarity], result of:
          0.007487943 = score(doc=2753,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.09697737 = fieldWeight in 2753, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2753)
        0.12155262 = weight(_text_:networks in 2753) [ClassicSimilarity], result of:
          0.12155262 = score(doc=2753,freq=10.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.5842703 = fieldWeight in 2753, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2753)
        0.0148981325 = product of:
          0.029796265 = sum of:
            0.029796265 = weight(_text_:22 in 2753) [ClassicSimilarity], result of:
              0.029796265 = score(doc=2753,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.19345059 = fieldWeight in 2753, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2753)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    Social networks evolve over time with the addition and removal of nodes and links to survive and thrive in their environments. Previous studies have shown that the link-formation process in such networks is influenced by a set of facilitators. However, there have been few empirical evaluations to determine the important facilitators. In a research partnership with law enforcement agencies, we used dynamic social-network analysis methods to examine several plausible facilitators of co-offending relationships in a large-scale narcotics network consisting of individuals and vehicles. Multivariate Cox regression and a two-proportion z-test on cyclic and focal closures of the network showed that mutual acquaintance and vehicle affiliations were significant facilitators for the network under study. We also found that homophily with respect to age, race, and gender were not good predictors of future link formation in these networks. Moreover, we examined the social causes and policy implications for the significance and insignificance of various facilitators including common jails on future co-offending. These findings provide important insights into the link-formation processes and the resilience of social networks. In addition, they can be used to aid in the prediction of future links. The methods described can also help in understanding the driving forces behind the formation and evolution of social networks facilitated by mobile and Web technologies.
    Date
    22. 3.2009 18:50:30
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.4, S.655-665
  3. Jiang, S.; Gao, Q.; Chen, H.; Roco, M.C.: ¬The roles of sharing, transfer, and public funding in nanotechnology knowledge-diffusion networks (2015) 0.05
    0.046483167 = product of:
      0.13944949 = sum of:
        0.0089855315 = weight(_text_:information in 1823) [ClassicSimilarity], result of:
          0.0089855315 = score(doc=1823,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.116372846 = fieldWeight in 1823, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1823)
        0.13046396 = weight(_text_:networks in 1823) [ClassicSimilarity], result of:
          0.13046396 = score(doc=1823,freq=8.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.6271047 = fieldWeight in 1823, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.046875 = fieldNorm(doc=1823)
      0.33333334 = coord(2/6)
    
    Abstract
    Understanding the knowledge-diffusion networks of patent inventors can help governments and businesses effectively use their investment to stimulate commercial science and technology development. Such inventor networks are usually large and complex. This study proposes a multidimensional network analysis framework that utilizes Exponential Random Graph Models (ERGMs) to simultaneously model knowledge-sharing and knowledge-transfer processes, examine their interactions, and evaluate the impacts of network structures and public funding on knowledge-diffusion networks. Experiments are conducted on a longitudinal data set that covers 2 decades (1991-2010) of nanotechnology-related US Patent and Trademark Office (USPTO) patents. The results show that knowledge sharing and knowledge transfer are closely interrelated. High degree centrality or boundary inventors play significant roles in the network, and National Science Foundation (NSF) public funding positively affects knowledge sharing despite its small fraction in overall funding and upstream research topics.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.5, S.1017-1029
  4. Chen, H.: Machine learning for information retrieval : neural networks, symbolic learning, and genetic algorithms (1994) 0.04
    0.044435196 = product of:
      0.13330558 = sum of:
        0.025678296 = weight(_text_:information in 2657) [ClassicSimilarity], result of:
          0.025678296 = score(doc=2657,freq=12.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.3325631 = fieldWeight in 2657, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2657)
        0.10762728 = weight(_text_:networks in 2657) [ClassicSimilarity], result of:
          0.10762728 = score(doc=2657,freq=4.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.517335 = fieldWeight in 2657, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2657)
      0.33333334 = coord(2/6)
    
    Abstract
    In the 1980s, knowledge-based techniques also made an impressive contribution to 'intelligent' information retrieval and indexing. More recently, researchers have turned to newer artificial intelligence based inductive learning techniques including neural networks, symbolic learning, and genetic algorithms grounded on diverse paradigms. These have provided great opportunities to enhance the capabilities of current information storage and retrieval systems. Provides an overview of these techniques and presents 3 popular methods: the connectionist Hopfield network; the symbolic ID3/ID5R; and evaluation based genetic algorithms in the context of information retrieval. The techniques are promising in their ability to analyze user queries, identify users' information needs, and suggest alternatives for search and can greatly complement the prevailing full text, keyword based, probabilistic, and knowledge based techniques
    Source
    Journal of the American Society for Information Science. 46(1995) no.3, S.194-216
  5. Zheng, R.; Li, J.; Chen, H.; Huang, Z.: ¬A framework for authorship identification of online messages : writing-style features and classification techniques (2006) 0.04
    0.03837303 = product of:
      0.07674606 = sum of:
        0.007487943 = weight(_text_:information in 5276) [ClassicSimilarity], result of:
          0.007487943 = score(doc=5276,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.09697737 = fieldWeight in 5276, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5276)
        0.054359984 = weight(_text_:networks in 5276) [ClassicSimilarity], result of:
          0.054359984 = score(doc=5276,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.26129362 = fieldWeight in 5276, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5276)
        0.0148981325 = product of:
          0.029796265 = sum of:
            0.029796265 = weight(_text_:22 in 5276) [ClassicSimilarity], result of:
              0.029796265 = score(doc=5276,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.19345059 = fieldWeight in 5276, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5276)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    With the rapid proliferation of Internet technologies and applications, misuse of online messages for inappropriate or illegal purposes has become a major concern for society. The anonymous nature of online-message distribution makes identity tracing a critical problem. We developed a framework for authorship identification of online messages to address the identity-tracing problem. In this framework, four types of writing-style features (lexical, syntactic, structural, and content-specific features) are extracted and inductive learning algorithms are used to build feature-based classification models to identify authorship of online messages. To examine this framework, we conducted experiments on English and Chinese online-newsgroup messages. We compared the discriminating power of the four types of features and of three classification techniques: decision trees, backpropagation neural networks, and support vector machines. The experimental results showed that the proposed approach was able to identify authors of online messages with satisfactory accuracy of 70 to 95%. All four types of message features contributed to discriminating authors of online messages. Support vector machines outperformed the other two classification techniques in our experiments. The high performance we achieved for both the English and Chinese datasets showed the potential of this approach in a multiple-language context.
    Date
    22. 7.2006 16:14:37
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.3, S.378-393
  6. Fu, T.; Abbasi, A.; Chen, H.: ¬A hybrid approach to Web forum interactional coherence analysis (2008) 0.03
    0.025979813 = product of:
      0.077939436 = sum of:
        0.012707461 = weight(_text_:information in 1872) [ClassicSimilarity], result of:
          0.012707461 = score(doc=1872,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.16457605 = fieldWeight in 1872, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1872)
        0.06523198 = weight(_text_:networks in 1872) [ClassicSimilarity], result of:
          0.06523198 = score(doc=1872,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.31355235 = fieldWeight in 1872, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.046875 = fieldNorm(doc=1872)
      0.33333334 = coord(2/6)
    
    Abstract
    Despite the rapid growth of text-based computer-mediated communication (CMC), its limitations have rendered the media highly incoherent. This poses problems for content analysis of online discourse archives. Interactional coherence analysis (ICA) attempts to accurately identify and construct CMC interaction networks. In this study, we propose the Hybrid Interactional Coherence (HIC) algorithm for identification of web forum interaction. HIC utilizes a bevy of system and linguistic features, including message header information, quotations, direct address, and lexical relations. Furthermore, several similarity-based methods including a Lexical Match Algorithm (LMA) and a sliding window method are utilized to account for interactional idiosyncrasies. Experiments results on two web forums revealed that the proposed HIC algorithm significantly outperformed comparison techniques in terms of precision, recall, and F-measure at both the forum and thread levels. Additionally, an example was used to illustrate how the improved ICA results can facilitate enhanced social network and role analysis capabilities.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.8, S.1195-1209
  7. Chen, H.; Ng, T.: ¬An algorithmic approach to concept exploration in a large knowledge network (automatic thesaurus consultation) : symbolic branch-and-bound search versus connectionist Hopfield Net Activation (1995) 0.02
    0.024739172 = product of:
      0.07421751 = sum of:
        0.0089855315 = weight(_text_:information in 2203) [ClassicSimilarity], result of:
          0.0089855315 = score(doc=2203,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.116372846 = fieldWeight in 2203, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2203)
        0.06523198 = weight(_text_:networks in 2203) [ClassicSimilarity], result of:
          0.06523198 = score(doc=2203,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.31355235 = fieldWeight in 2203, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.046875 = fieldNorm(doc=2203)
      0.33333334 = coord(2/6)
    
    Abstract
    Presents a framework for knowledge discovery and concept exploration. In order to enhance the concept exploration capability of knowledge based systems and to alleviate the limitation of the manual browsing approach, develops 2 spreading activation based algorithms for concept exploration in large, heterogeneous networks of concepts (eg multiple thesauri). One algorithm, which is based on the symbolic AI paradigma, performs a conventional branch-and-bound search on a semantic net representation to identify other highly relevant concepts (a serial, optimal search process). The 2nd algorithm, which is absed on the neural network approach, executes the Hopfield net parallel relaxation and convergence process to identify 'convergent' concepts for some initial queries (a parallel, heuristic search process). Tests these 2 algorithms on a large text-based knowledge network of about 13.000 nodes (terms) and 80.000 directed links in the area of computing technologies
    Source
    Journal of the American Society for Information Science. 46(1995) no.5, S.348-369
  8. Huang, C.; Fu, T.; Chen, H.: Text-based video content classification for online video-sharing sites (2010) 0.02
    0.02244316 = product of:
      0.06732948 = sum of:
        0.0129694985 = weight(_text_:information in 3452) [ClassicSimilarity], result of:
          0.0129694985 = score(doc=3452,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.16796975 = fieldWeight in 3452, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3452)
        0.054359984 = weight(_text_:networks in 3452) [ClassicSimilarity], result of:
          0.054359984 = score(doc=3452,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.26129362 = fieldWeight in 3452, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3452)
      0.33333334 = coord(2/6)
    
    Abstract
    With the emergence of Web 2.0, sharing personal content, communicating ideas, and interacting with other online users in Web 2.0 communities have become daily routines for online users. User-generated data from Web 2.0 sites provide rich personal information (e.g., personal preferences and interests) and can be utilized to obtain insight about cyber communities and their social networks. Many studies have focused on leveraging user-generated information to analyze blogs and forums, but few studies have applied this approach to video-sharing Web sites. In this study, we propose a text-based framework for video content classification of online-video sharing Web sites. Different types of user-generated data (e.g., titles, descriptions, and comments) were used as proxies for online videos, and three types of text features (lexical, syntactic, and content-specific features) were extracted. Three feature-based classification techniques (C4.5, Naïve Bayes, and Support Vector Machine) were used to classify videos. To evaluate the proposed framework, user-generated data from candidate videos, which were identified by searching user-given keywords on YouTube, were first collected. Then, a subset of the collected data was randomly selected and manually tagged by users as our experiment data. The experimental results showed that the proposed approach was able to classify online videos based on users' interests with accuracy rates up to 87.2%, and all three types of text features contributed to discriminating videos. Support Vector Machine outperformed C4.5 and Naïve Bayes techniques in our experiments. In addition, our case study further demonstrated that accurate video-classification results are very useful for identifying implicit cyber communities on video-sharing Web sites.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.5, S.891-906
  9. Dang, Y.; Zhang, Y.; Chen, H.; Hu, P.J.-H.; Brown, S.A.; Larson, C.: Arizona Literature Mapper : an integrated approach to monitor and analyze global bioterrorism research literature (2009) 0.02
    0.021649845 = product of:
      0.064949535 = sum of:
        0.01058955 = weight(_text_:information in 2943) [ClassicSimilarity], result of:
          0.01058955 = score(doc=2943,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.13714671 = fieldWeight in 2943, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2943)
        0.054359984 = weight(_text_:networks in 2943) [ClassicSimilarity], result of:
          0.054359984 = score(doc=2943,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.26129362 = fieldWeight in 2943, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2943)
      0.33333334 = coord(2/6)
    
    Abstract
    Biomedical research is critical to biodefense, which is drawing increasing attention from governments globally as well as from various research communities. The U.S. government has been closely monitoring and regulating biomedical research activities, particularly those studying or involving bioterrorism agents or diseases. Effective surveillance requires comprehensive understanding of extant biomedical research and timely detection of new developments or emerging trends. The rapid knowledge expansion, technical breakthroughs, and spiraling collaboration networks demand greater support for literature search and sharing, which cannot be effectively supported by conventional literature search mechanisms or systems. In this study, we propose an integrated approach that integrates advanced techniques for content analysis, network analysis, and information visualization. We design and implement Arizona Literature Mapper, a Web-based portal that allows users to gain timely, comprehensive understanding of bioterrorism research, including leading scientists, research groups, institutions as well as insights about current mainstream interests or emerging trends. We conduct two user studies to evaluate Arizona Literature Mapper and include a well-known system for benchmarking purposes. According to our results, Arizona Literature Mapper is significantly more effective for supporting users' search of bioterrorism publications than PubMed. Users consider Arizona Literature Mapper more useful and easier to use than PubMed. Users are also more satisfied with Arizona Literature Mapper and show stronger intentions to use it in the future. Assessments of Arizona Literature Mapper's analysis functions are also positive, as our subjects consider them useful, easy to use, and satisfactory. Our results have important implications that are also discussed in the article.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.7, S.1466-1485
  10. Marshall, B.; Chen, H.; Kaza, S.: Using importance flooding to identify interesting networks of criminal activity (2008) 0.02
    0.020615976 = product of:
      0.061847925 = sum of:
        0.007487943 = weight(_text_:information in 2386) [ClassicSimilarity], result of:
          0.007487943 = score(doc=2386,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.09697737 = fieldWeight in 2386, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2386)
        0.054359984 = weight(_text_:networks in 2386) [ClassicSimilarity], result of:
          0.054359984 = score(doc=2386,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.26129362 = fieldWeight in 2386, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2386)
      0.33333334 = coord(2/6)
    
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.13, S.2099-2114
  11. Liu, X.; Kaza, S.; Zhang, P.; Chen, H.: Determining inventor status and its effect on knowledge diffusion : a study on nanotechnology literature from China, Russia, and India (2011) 0.02
    0.020615976 = product of:
      0.061847925 = sum of:
        0.007487943 = weight(_text_:information in 4468) [ClassicSimilarity], result of:
          0.007487943 = score(doc=4468,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.09697737 = fieldWeight in 4468, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4468)
        0.054359984 = weight(_text_:networks in 4468) [ClassicSimilarity], result of:
          0.054359984 = score(doc=4468,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.26129362 = fieldWeight in 4468, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4468)
      0.33333334 = coord(2/6)
    
    Abstract
    In an increasingly global research landscape, it is important to identify the most prolific researchers in various institutions and their influence on the diffusion of knowledge. Knowledge diffusion within institutions is influenced by not just the status of individual researchers but also the collaborative culture that determines status. There are various methods to measure individual status, but few studies have compared them or explored the possible effects of different cultures on the status measures. In this article, we examine knowledge diffusion within science and technology-oriented research organizations. Using social network analysis metrics to measure individual status in large-scale coauthorship networks, we studied an individual's impact on the recombination of knowledge to produce innovation in nanotechnology. Data from the most productive and high-impact institutions in China (Chinese Academy of Sciences), Russia (Russian Academy of Sciences), and India (Indian Institutes of Technology) were used. We found that boundary-spanning individuals influenced knowledge diffusion in all countries. However, our results also indicate that cultural and institutional differences may influence knowledge diffusion.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.6, S.1166-1176
  12. Chung, W.; Chen, H.: Browsing the underdeveloped Web : an experiment on the Arabic Medical Web Directory (2009) 0.01
    0.011949606 = product of:
      0.03584882 = sum of:
        0.017971063 = weight(_text_:information in 2733) [ClassicSimilarity], result of:
          0.017971063 = score(doc=2733,freq=8.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.23274569 = fieldWeight in 2733, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2733)
        0.017877758 = product of:
          0.035755515 = sum of:
            0.035755515 = weight(_text_:22 in 2733) [ClassicSimilarity], result of:
              0.035755515 = score(doc=2733,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.23214069 = fieldWeight in 2733, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2733)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    While the Web has grown significantly in recent years, some portions of the Web remain largely underdeveloped, as shown in a lack of high-quality content and functionality. An example is the Arabic Web, in which a lack of well-structured Web directories limits users' ability to browse for Arabic resources. In this research, we proposed an approach to building Web directories for the underdeveloped Web and developed a proof-of-concept prototype called the Arabic Medical Web Directory (AMedDir) that supports browsing of over 5,000 Arabic medical Web sites and pages organized in a hierarchical structure. We conducted an experiment involving Arab participants and found that the AMedDir significantly outperformed two benchmark Arabic Web directories in terms of browsing effectiveness, efficiency, information quality, and user satisfaction. Participants expressed strong preference for the AMedDir and provided many positive comments. This research thus contributes to developing a useful Web directory for organizing the information in the Arabic medical domain and to a better understanding of how to support browsing on the underdeveloped Web.
    Date
    22. 3.2009 17:57:50
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.3, S.595-607
    Theme
    Information Gateway
  13. Carmel, E.; Crawford, S.; Chen, H.: Browsing in hypertext : a cognitive study (1992) 0.01
    0.009958006 = product of:
      0.02987402 = sum of:
        0.014975886 = weight(_text_:information in 7469) [ClassicSimilarity], result of:
          0.014975886 = score(doc=7469,freq=8.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.19395474 = fieldWeight in 7469, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=7469)
        0.0148981325 = product of:
          0.029796265 = sum of:
            0.029796265 = weight(_text_:22 in 7469) [ClassicSimilarity], result of:
              0.029796265 = score(doc=7469,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.19345059 = fieldWeight in 7469, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=7469)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    With the growth of hypertext and multimedia applications that support and encourage browsing it is time to take a penetrating look at browsing behaviour. Several dimensions of browsing are exemined, to find out: first, what is browsing and what cognitive processes are associated with it: second, is there a browsing strategy, and if so, are there any differences between how subject-area experts and novices browse; and finally, how can this knowledge be applied to improve the design of hypertext systems. Two groups of students, subject-area experts and novices, were studied while browsing a Macintosh HyperCard application on the subject The Vietnam War. A protocol analysis technique was used to gather and analyze data. Components of the GOMS model were used to describe the goals, operators, methods, and selection rules observed: Three browsing strategies were identified: (1) search-oriented browse, scanning and and reviewing information relevant to a fixed task; (2) review-browse, scanning and reviewing intersting information in the presence of transient browse goals that represent changing tasks, and (3) scan-browse, scanning for interesting information (without review). Most subjects primarily used review-browse interspersed with search-oriented browse. Within this strategy, comparisons between subject-area experts and novices revealed differences in tactics: experts browsed in more depth, seldom used referential links, selected different kinds of topics, and viewed information differently thatn did novices. Based on these findings, suggestions are made to hypertext developers
    Source
    IEEE transactions on systems, man and cybernetics. 22(1992) no.5, S.865-884
  14. Leroy, G.; Chen, H.: Genescene: an ontology-enhanced integration of linguistic and co-occurrence based relations in biomedical texts (2005) 0.01
    0.0074620256 = product of:
      0.022386076 = sum of:
        0.007487943 = weight(_text_:information in 5259) [ClassicSimilarity], result of:
          0.007487943 = score(doc=5259,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.09697737 = fieldWeight in 5259, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5259)
        0.0148981325 = product of:
          0.029796265 = sum of:
            0.029796265 = weight(_text_:22 in 5259) [ClassicSimilarity], result of:
              0.029796265 = score(doc=5259,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.19345059 = fieldWeight in 5259, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5259)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    22. 7.2006 14:26:01
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.5, S.457-468
  15. Chen, H.; Shankaranarayanan, G.; She, L.: ¬A machine learning approach to inductive query by examples : an experiment using relevance feedback, ID3, genetic algorithms, and simulated annealing (1998) 0.00
    0.004492766 = product of:
      0.026956595 = sum of:
        0.026956595 = weight(_text_:information in 1148) [ClassicSimilarity], result of:
          0.026956595 = score(doc=1148,freq=18.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.34911853 = fieldWeight in 1148, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1148)
      0.16666667 = coord(1/6)
    
    Abstract
    Information retrieval using probabilistic techniques has attracted significant attention on the part of researchers in information and computer science over the past few decades. In the 1980s, knowledge-based techniques also made an impressive contribution to 'intelligent' information retrieval and indexing. More recently, information science researchers have tfurned to other newer inductive learning techniques including symbolic learning, genetic algorithms, and simulated annealing. These newer techniques, which are grounded in diverse paradigms, have provided great opportunities for researchers to enhance the information processing and retrieval capabilities of current information systems. In this article, we first provide an overview of these newer techniques and their use in information retrieval research. In order to femiliarize readers with the techniques, we present 3 promising methods: the symbolic ID3 algorithm, evolution-based genetic algorithms, and simulated annealing. We discuss their knowledge representations and algorithms in the unique context of information retrieval
    Source
    Journal of the American Society for Information Science. 49(1998) no.8, S.693-705
  16. Chen, H.: Semantic research for digital libraries (1999) 0.00
    0.004492766 = product of:
      0.026956595 = sum of:
        0.026956595 = weight(_text_:information in 1247) [ClassicSimilarity], result of:
          0.026956595 = score(doc=1247,freq=18.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.34911853 = fieldWeight in 1247, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1247)
      0.16666667 = coord(1/6)
    
    Abstract
    In this era of the Internet and distributed, multimedia computing, new and emerging classes of information systems applications have swept into the lives of office workers and people in general. From digital libraries, multimedia systems, geographic information systems, and collaborative computing to electronic commerce, virtual reality, and electronic video arts and games, these applications have created tremendous opportunities for information and computer science researchers and practitioners. As applications become more pervasive, pressing, and diverse, several well-known information retrieval (IR) problems have become even more urgent. Information overload, a result of the ease of information creation and transmission via the Internet and WWW, has become more troublesome (e.g., even stockbrokers and elementary school students, heavily exposed to various WWW search engines, are versed in such IR terminology as recall and precision). Significant variations in database formats and structures, the richness of information media (text, audio, and video), and an abundance of multilingual information content also have created severe information interoperability problems -- structural interoperability, media interoperability, and multilingual interoperability.
  17. Chen, H.: Explaining and alleviating information management indeterminism : a knowledge-based framework (1994) 0.00
    0.0044649467 = product of:
      0.02678968 = sum of:
        0.02678968 = weight(_text_:information in 8221) [ClassicSimilarity], result of:
          0.02678968 = score(doc=8221,freq=10.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.3469568 = fieldWeight in 8221, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=8221)
      0.16666667 = coord(1/6)
    
    Abstract
    Attempts to identify the nature and causes of information management indeterminism in an online research environment and proposes solutions for alleviating this indeterminism. Conducts two empirical studies of information management activities. The first identified the types and nature of information management indeterminism by evaluating archived text. The second focused on four sources of indeterminism: subject area knowledge, classification knowledge, system knowledge, and collaboration knowledge. Proposes a knowledge based design for alleviating indeterminism, which contains a system generated thesaurus and an inferencing engine
    Source
    Information processing and management. 30(1994) no.4, S.557-577
  18. Marshall, B.; McDonald, D.; Chen, H.; Chung, W.: EBizPort: collecting and analyzing business intelligence information (2004) 0.00
    0.004139116 = product of:
      0.024834696 = sum of:
        0.024834696 = weight(_text_:information in 2505) [ClassicSimilarity], result of:
          0.024834696 = score(doc=2505,freq=22.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.32163754 = fieldWeight in 2505, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2505)
      0.16666667 = coord(1/6)
    
    Abstract
    To make good decisions, businesses try to gather good intelligence information. Yet managing and processing a large amount of unstructured information and data stand in the way of greater business knowledge. An effective business intelligence tool must be able to access quality information from a variety of sources in a variety of forms, and it must support people as they search for and analyze that information. The EBizPort system was designed to address information needs for the business/IT community. EBizPort's collection-building process is designed to acquire credible, timely, and relevant information. The user interface provides access to collected and metasearched resources using innovative tools for summarization, categorization, and visualization. The effectiveness, efficiency, usability, and information quality of the EBizPort system were measured. EBizPort significantly outperformed Brint, a business search portal, in search effectiveness, information quality, user satisfaction, and usability. Users particularly liked EBizPort's clean and user-friendly interface. Results from our evaluation study suggest that the visualization function added value to the search and analysis process, that the generalizable collection-building technique can be useful for domain-specific information searching an the Web, and that the search interface was important for Web search and browse support.
    Source
    Journal of the American Society for Information Science and Technology. 55(2004) no.10, S.873-891
  19. Zhu, B.; Chen, H.: Information visualization (2004) 0.00
    0.0040033073 = product of:
      0.024019843 = sum of:
        0.024019843 = weight(_text_:information in 4276) [ClassicSimilarity], result of:
          0.024019843 = score(doc=4276,freq=42.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.31108427 = fieldWeight in 4276, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4276)
      0.16666667 = coord(1/6)
    
    Abstract
    Advanced technology has resulted in the generation of about one million terabytes of information every year. Ninety-reine percent of this is available in digital format (Keim, 2001). More information will be generated in the next three years than was created during all of previous human history (Keim, 2001). Collecting information is no longer a problem, but extracting value from information collections has become progressively more difficult. Various search engines have been developed to make it easier to locate information of interest, but these work well only for a person who has a specific goal and who understands what and how information is stored. This usually is not the Gase. Visualization was commonly thought of in terms of representing human mental processes (MacEachren, 1991; Miller, 1984). The concept is now associated with the amplification of these mental processes (Card, Mackinlay, & Shneiderman, 1999). Human eyes can process visual cues rapidly, whereas advanced information analysis techniques transform the computer into a powerful means of managing digitized information. Visualization offers a link between these two potent systems, the human eye and the computer (Gershon, Eick, & Card, 1998), helping to identify patterns and to extract insights from large amounts of information. The identification of patterns is important because it may lead to a scientific discovery, an interpretation of clues to solve a crime, the prediction of catastrophic weather, a successful financial investment, or a better understanding of human behavior in a computermediated environment. Visualization technology shows considerable promise for increasing the value of large-scale collections of information, as evidenced by several commercial applications of TreeMap (e.g., http://www.smartmoney.com) and Hyperbolic tree (e.g., http://www.inxight.com) to visualize large-scale hierarchical structures. Although the proliferation of visualization technologies dates from the 1990s where sophisticated hardware and software made increasingly faster generation of graphical objects possible, the role of visual aids in facilitating the construction of mental images has a long history. Visualization has been used to communicate ideas, to monitor trends implicit in data, and to explore large volumes of data for hypothesis generation. Imagine traveling to a strange place without a map, having to memorize physical and chemical properties of an element without Mendeleyev's periodic table, trying to understand the stock market without statistical diagrams, or browsing a collection of documents without interactive visual aids. A collection of information can lose its value simply because of the effort required for exhaustive exploration. Such frustrations can be overcome by visualization.
    Visualization can be classified as scientific visualization, software visualization, or information visualization. Although the data differ, the underlying techniques have much in common. They use the same elements (visual cues) and follow the same rules of combining visual cues to deliver patterns. They all involve understanding human perception (Encarnacao, Foley, Bryson, & Feiner, 1994) and require domain knowledge (Tufte, 1990). Because most decisions are based an unstructured information, such as text documents, Web pages, or e-mail messages, this chapter focuses an the visualization of unstructured textual documents. The chapter reviews information visualization techniques developed over the last decade and examines how they have been applied in different domains. The first section provides the background by describing visualization history and giving overviews of scientific, software, and information visualization as well as the perceptual aspects of visualization. The next section assesses important visualization techniques that convert abstract information into visual objects and facilitate navigation through displays an a computer screen. It also explores information analysis algorithms that can be applied to identify or extract salient visualizable structures from collections of information. Information visualization systems that integrate different types of technologies to address problems in different domains are then surveyed; and we move an to a survey and critique of visualization system evaluation studies. The chapter concludes with a summary and identification of future research directions.
    Source
    Annual review of information science and technology. 39(2005), S.139-177
  20. Chen, H.: Knowledge-based document retrieval : framework and design (1992) 0.00
    0.00399357 = product of:
      0.023961417 = sum of:
        0.023961417 = weight(_text_:information in 5283) [ClassicSimilarity], result of:
          0.023961417 = score(doc=5283,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.3103276 = fieldWeight in 5283, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.125 = fieldNorm(doc=5283)
      0.16666667 = coord(1/6)
    
    Source
    Journal of information science. 18(1992), S.293-314

Types

  • a 59
  • el 1
  • More… Less…