Search (50 results, page 1 of 3)

  • × author_ss:"Rousseau, R."
  • × language_ss:"e"
  1. Asonuma, A.; Fang, Y.; Rousseau, R.: Reflections on the age distribution of Japanese scientists (2006) 0.11
    0.11246149 = product of:
      0.22492298 = sum of:
        0.0089855315 = weight(_text_:information in 5270) [ClassicSimilarity], result of:
          0.0089855315 = score(doc=5270,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.116372846 = fieldWeight in 5270, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5270)
        0.09176904 = weight(_text_:united in 5270) [ClassicSimilarity], result of:
          0.09176904 = score(doc=5270,freq=2.0), product of:
            0.24675635 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.043984205 = queryNorm
            0.37190145 = fieldWeight in 5270, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.046875 = fieldNorm(doc=5270)
        0.12416841 = sum of:
          0.088412896 = weight(_text_:states in 5270) [ClassicSimilarity], result of:
            0.088412896 = score(doc=5270,freq=2.0), product of:
              0.24220218 = queryWeight, product of:
                5.506572 = idf(docFreq=487, maxDocs=44218)
                0.043984205 = queryNorm
              0.3650376 = fieldWeight in 5270, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.506572 = idf(docFreq=487, maxDocs=44218)
                0.046875 = fieldNorm(doc=5270)
          0.035755515 = weight(_text_:22 in 5270) [ClassicSimilarity], result of:
            0.035755515 = score(doc=5270,freq=2.0), product of:
              0.1540252 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043984205 = queryNorm
              0.23214069 = fieldWeight in 5270, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=5270)
      0.5 = coord(3/6)
    
    Abstract
    The age distribution of a country's scientists is an important element in the study of its research capacity. In this article we investigate the age distribution of Japanese scientists in order to find out whether major events such as World War II had an appreciable effect on its features. Data have been obtained from population censuses taken in Japan from 1970 to 1995. A comparison with the situation in China and the United States has been made. We find that the group of scientific researchers outside academia is dominated by the young: those younger than age 35. The personnel group in higher education, on the other hand, is dominated by the baby boomers: those who were born after World War II. Contrary to the Chinese situation we could not find any influence of major nondemographic events. The only influence we found was the increase in enrollment of university students after World War II caused by the reform of the Japanese university system. Female participation in the scientific and university systems in Japan, though still low, is increasing.
    Date
    22. 7.2006 15:26:24
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.3, S.342-346
  2. Rousseau, R.; Ding, J.: Does international collaboration yield a higher citation potential for US scientists publishing in highly visible interdisciplinary Journals? (2016) 0.08
    0.084560595 = product of:
      0.16912119 = sum of:
        0.010483121 = weight(_text_:information in 2860) [ClassicSimilarity], result of:
          0.010483121 = score(doc=2860,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.13576832 = fieldWeight in 2860, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2860)
        0.10706388 = weight(_text_:united in 2860) [ClassicSimilarity], result of:
          0.10706388 = score(doc=2860,freq=2.0), product of:
            0.24675635 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.043984205 = queryNorm
            0.433885 = fieldWeight in 2860, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2860)
        0.05157419 = product of:
          0.10314838 = sum of:
            0.10314838 = weight(_text_:states in 2860) [ClassicSimilarity], result of:
              0.10314838 = score(doc=2860,freq=2.0), product of:
                0.24220218 = queryWeight, product of:
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.043984205 = queryNorm
                0.42587718 = fieldWeight in 2860, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2860)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    Generally, multicountry papers receive more citations than single-country ones. In this contribution, we examine if this rule also applies to American scientists publishing in highly visible interdisciplinary journals. Concretely, we compare the citations received by American scientists in Nature, Science, and the Proceedings of the National Academy of Sciences of the United States of America (PNAS). It is shown that, statistically, American scientists publishing in Nature and Science do not benefit from international collaboration. This statement also holds for communicated submissions, but not for direct and for contributed submissions, to PNAS.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.4, S.1009-1013
  3. Hu, X.; Rousseau, R.; Chen, J.: ¬A new approach for measuring the value of patents based on structural indicators for ego patent citation networks (2012) 0.04
    0.039370134 = product of:
      0.1181104 = sum of:
        0.010483121 = weight(_text_:information in 445) [ClassicSimilarity], result of:
          0.010483121 = score(doc=445,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.13576832 = fieldWeight in 445, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=445)
        0.10762728 = weight(_text_:networks in 445) [ClassicSimilarity], result of:
          0.10762728 = score(doc=445,freq=4.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.517335 = fieldWeight in 445, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0546875 = fieldNorm(doc=445)
      0.33333334 = coord(2/6)
    
    Abstract
    Technology sectors differ in terms of technological complexity. When studying technology and innovation through patent analysis it is well known that similar amounts of technological knowledge can produce different numbers of patented innovation as output. A new multilayered approach to measure the technological value of patents based on ego patent citation networks (PCNs) is developed in this study. The results show that the structural indicators for the ego PCN developed in this contribution can characterize groups of patents and, hence, in an indirect way, the health of companies.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.9, S.1834-1842
  4. Egghe, L.; Rousseau, R.: ¬A measure for the cohesion of weighted networks (2003) 0.03
    0.028121524 = product of:
      0.08436457 = sum of:
        0.007487943 = weight(_text_:information in 5157) [ClassicSimilarity], result of:
          0.007487943 = score(doc=5157,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.09697737 = fieldWeight in 5157, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5157)
        0.076876625 = weight(_text_:networks in 5157) [ClassicSimilarity], result of:
          0.076876625 = score(doc=5157,freq=4.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.369525 = fieldWeight in 5157, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5157)
      0.33333334 = coord(2/6)
    
    Abstract
    Measurement of the degree of interconnectedness in graph like networks of hyperlinks or citations can indicate the existence of research fields and assist in comparative evaluation of research efforts. In this issue we begin with Egghe and Rousseau who review compactness measures and investigate the compactness of a network as a weighted graph with dissimilarity values characterizing the arcs between nodes. They make use of a generalization of the Botofogo, Rivlin, Shneiderman, (BRS) compaction measure which treats the distance between unreachable nodes not as infinity but rather as the number of nodes in the network. The dissimilarity values are determined by summing the reciprocals of the weights of the arcs in the shortest chain between two nodes where no weight is smaller than one. The BRS measure is then the maximum value for the sum of the dissimilarity measures less the actual sum divided by the difference between the maximum and minimum. The Wiener index, the sum of all elements in the dissimilarity matrix divided by two, is then computed for Small's particle physics co-citation data as well as the BRS measure, the dissimilarity values and shortest paths. The compactness measure for the weighted network is smaller than for the un-weighted. When the bibliographic coupling network is utilized it is shown to be less compact than the co-citation network which indicates that the new measure produces results that confirm to an obvious case.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.3, S.193-202
  5. Egghe, L.; Guns, R.; Rousseau, R.; Leuven, K.U.: Erratum (2012) 0.01
    0.014924051 = product of:
      0.04477215 = sum of:
        0.014975886 = weight(_text_:information in 4992) [ClassicSimilarity], result of:
          0.014975886 = score(doc=4992,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.19395474 = fieldWeight in 4992, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=4992)
        0.029796265 = product of:
          0.05959253 = sum of:
            0.05959253 = weight(_text_:22 in 4992) [ClassicSimilarity], result of:
              0.05959253 = score(doc=4992,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.38690117 = fieldWeight in 4992, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4992)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    14. 2.2012 12:53:22
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.2, S.429
  6. Liu, Y.; Rafols, I.; Rousseau, R.: ¬A framework for knowledge integration and diffusion (2012) 0.01
    0.010871997 = product of:
      0.06523198 = sum of:
        0.06523198 = weight(_text_:networks in 297) [ClassicSimilarity], result of:
          0.06523198 = score(doc=297,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.31355235 = fieldWeight in 297, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.046875 = fieldNorm(doc=297)
      0.16666667 = coord(1/6)
    
    Abstract
    Purpose - This paper aims to introduce a general framework for the analysis of knowledge integration and diffusion using bibliometric data. Design/methodology/approach - The authors propose that in order to characterise knowledge integration and diffusion of a given issue (the source, for example articles on a topic or by an organisation, etc.), one has to choose a set of elements from the source (the intermediary set, for example references, keywords, etc.). This set can then be classified into categories (cats), thus making it possible to investigate its diversity. The set can also be characterised according to the coherence of a network associated to it. Findings - This framework allows a methodology to be developed to assess knowledge integration and diffusion. Such methodologies can be useful for a number of science policy issues, including the assessment of interdisciplinarity in research and dynamics of research networks. Originality/value - The main contribution of this article is to provide a simple and easy to use generalisation of an existing approach to study interdisciplinarity, bringing knowledge integration and knowledge diffusion together in one framework.
  7. Egghe, L.; Rousseau, R.: Averaging and globalising quotients of informetric and scientometric data (1996) 0.01
    0.00895443 = product of:
      0.026863288 = sum of:
        0.0089855315 = weight(_text_:information in 7659) [ClassicSimilarity], result of:
          0.0089855315 = score(doc=7659,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.116372846 = fieldWeight in 7659, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=7659)
        0.017877758 = product of:
          0.035755515 = sum of:
            0.035755515 = weight(_text_:22 in 7659) [ClassicSimilarity], result of:
              0.035755515 = score(doc=7659,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.23214069 = fieldWeight in 7659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=7659)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Source
    Journal of information science. 22(1996) no.3, S.165-170
  8. Ahlgren, P.; Jarneving, B.; Rousseau, R.: Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient (2003) 0.01
    0.0067967153 = product of:
      0.020390145 = sum of:
        0.008471641 = weight(_text_:information in 5171) [ClassicSimilarity], result of:
          0.008471641 = score(doc=5171,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.10971737 = fieldWeight in 5171, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=5171)
        0.011918506 = product of:
          0.023837011 = sum of:
            0.023837011 = weight(_text_:22 in 5171) [ClassicSimilarity], result of:
              0.023837011 = score(doc=5171,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.15476047 = fieldWeight in 5171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5171)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Ahlgren, Jarneving, and. Rousseau review accepted procedures for author co-citation analysis first pointing out that since in the raw data matrix the row and column values are identical i,e, the co-citation count of two authors, there is no clear choice for diagonal values. They suggest the number of times an author has been co-cited with himself excluding self citation rather than the common treatment as zeros or as missing values. When the matrix is converted to a similarity matrix the normal procedure is to create a matrix of Pearson's r coefficients between data vectors. Ranking by r and by co-citation frequency and by intuition can easily yield three different orders. It would seem necessary that the adding of zeros to the matrix will not affect the value or the relative order of similarity measures but it is shown that this is not the case with Pearson's r. Using 913 bibliographic descriptions form the Web of Science of articles form JASIS and Scientometrics, authors names were extracted, edited and 12 information retrieval authors and 12 bibliometric authors each from the top 100 most cited were selected. Co-citation and r value (diagonal elements treated as missing) matrices were constructed, and then reconstructed in expanded form. Adding zeros can both change the r value and the ordering of the authors based upon that value. A chi-squared distance measure would not violate these requirements, nor would the cosine coefficient. It is also argued that co-citation data is ordinal data since there is no assurance of an absolute zero number of co-citations, and thus Pearson is not appropriate. The number of ties in co-citation data make the use of the Spearman rank order coefficient problematic.
    Date
    9. 7.2006 10:22:35
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.6, S.549-568
  9. Egghe, L.; Rousseau, R.: Introduction to informetrics : quantitative methods in library, documentation and information science (1990) 0.00
    0.0039068284 = product of:
      0.02344097 = sum of:
        0.02344097 = weight(_text_:information in 1515) [ClassicSimilarity], result of:
          0.02344097 = score(doc=1515,freq=10.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.3035872 = fieldWeight in 1515, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1515)
      0.16666667 = coord(1/6)
    
    COMPASS
    Information science / Statistical mathematics
    LCSH
    Information science / Statistical methods
    Subject
    Information science / Statistical mathematics
    Information science / Statistical methods
  10. Rousseau, S.; Rousseau, R.: Metric-wiseness (2015) 0.00
    0.0034943735 = product of:
      0.020966241 = sum of:
        0.020966241 = weight(_text_:information in 6069) [ClassicSimilarity], result of:
          0.020966241 = score(doc=6069,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.27153665 = fieldWeight in 6069, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=6069)
      0.16666667 = coord(1/6)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.11, S.2389
  11. Egghe, L.; Rousseau, R.: ¬A theoretical study of recall and precision using a topological approach to information retrieval (1998) 0.00
    0.0034585332 = product of:
      0.020751199 = sum of:
        0.020751199 = weight(_text_:information in 3267) [ClassicSimilarity], result of:
          0.020751199 = score(doc=3267,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.2687516 = fieldWeight in 3267, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=3267)
      0.16666667 = coord(1/6)
    
    Abstract
    Topologies for information retrieval systems are generated by certain subsets, called retrievals. Shows how recall and precision can be expressed using only retrievals. Investigates different types of retrieval systems: both threshold systems and close match systems and both optimal and non optimal retrieval. Highlights the relation with the hypergeometric and some non-standard distributions
    Source
    Information processing and management. 34(1998) nos.2/3, S.191-218
  12. Rousseau, R.; Ye, F.Y.: ¬A proposal for a dynamic h-type index (2008) 0.00
    0.0034585332 = product of:
      0.020751199 = sum of:
        0.020751199 = weight(_text_:information in 2351) [ClassicSimilarity], result of:
          0.020751199 = score(doc=2351,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.2687516 = fieldWeight in 2351, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=2351)
      0.16666667 = coord(1/6)
    
    Abstract
    A time-dependent h-type indicator is proposed. This indicator depends on the size of the h-core, the number of citations received, and recent change in the value of the h-index. As such, it tries to combine in a dynamic way older information about the source (e.g., a scientist or research institute that is evaluated) with recent information.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.11, S.1853-1855
  13. Egghe, L.; Rousseau, R.: Topological aspects of information retrieval (1998) 0.00
    0.0030262163 = product of:
      0.018157298 = sum of:
        0.018157298 = weight(_text_:information in 2157) [ClassicSimilarity], result of:
          0.018157298 = score(doc=2157,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.23515764 = fieldWeight in 2157, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2157)
      0.16666667 = coord(1/6)
    
    Abstract
    Let (DS, DQ, sim) be a retrieval system consisting of a document space DS, a query space QS, and a function sim, expressing the similarity between a document and a query. Following D.M. Everett and S.C. Cater (1992), we introduce topologies on the document space. These topologies are generated by the similarity function sim and the query space QS. 3 topologies will be studied: the retrieval topology, the similarity topology and the (pseudo-)metric one. It is shown that the retrieval topology is the coarsest of the three, while the (pseudo-)metric is the strongest. These 3 topologies are generally different, reflecting distinct topological aspects of information retrieval. We present necessary and sufficient conditions for these topological aspects to be equal
    Source
    Journal of the American Society for Information Science. 49(1998) no.13, S.1144-1160
  14. Rousseau, R.: Bradford curves (1994) 0.00
    0.0029951772 = product of:
      0.017971063 = sum of:
        0.017971063 = weight(_text_:information in 7304) [ClassicSimilarity], result of:
          0.017971063 = score(doc=7304,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.23274569 = fieldWeight in 7304, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=7304)
      0.16666667 = coord(1/6)
    
    Source
    Information processing and management. 30(1994) no.2, S.267-277
  15. Rousseau, R.: Egghe's g-index is not a proper concentration measure (2015) 0.00
    0.0029951772 = product of:
      0.017971063 = sum of:
        0.017971063 = weight(_text_:information in 1864) [ClassicSimilarity], result of:
          0.017971063 = score(doc=1864,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.23274569 = fieldWeight in 1864, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=1864)
      0.16666667 = coord(1/6)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.7, S.1518-1519
  16. Egghe, L.; Rousseau, R.: Duality in information retrieval and the hypegeometric distribution (1997) 0.00
    0.0028238804 = product of:
      0.016943282 = sum of:
        0.016943282 = weight(_text_:information in 647) [ClassicSimilarity], result of:
          0.016943282 = score(doc=647,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.21943474 = fieldWeight in 647, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=647)
      0.16666667 = coord(1/6)
    
    Abstract
    Asserts that duality is an important topic in informetrics, especially in connection with the classical informetric laws. Yet this concept is less studied in information retrieval. It deals with the unification or symmetry between queries and documents, search formulation versus indexing, and relevant versus retrieved documents. Elaborates these ideas and highlights the connection with the hypergeometric distribution
  17. Rousseau, R.: Timelines in citation research (2006) 0.00
    0.0028238804 = product of:
      0.016943282 = sum of:
        0.016943282 = weight(_text_:information in 1746) [ClassicSimilarity], result of:
          0.016943282 = score(doc=1746,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.21943474 = fieldWeight in 1746, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1746)
      0.16666667 = coord(1/6)
    
    Abstract
    The timeline used in ISI's Journal Citation Reports (JCR; Thomson ISI, formerly the Institute for Scientific Information, Philadelphia, PA) for half-life calculations, is not a timeline for (average) cited age. These two timelines are shifted over half a year.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.10, S.1404-1405
  18. Shi, D.; Rousseau, R.; Yang, L.; Li, J.: ¬A journal's impact factor is influenced by changes in publication delays of citing journals (2017) 0.00
    0.0025938996 = product of:
      0.015563398 = sum of:
        0.015563398 = weight(_text_:information in 3441) [ClassicSimilarity], result of:
          0.015563398 = score(doc=3441,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.20156369 = fieldWeight in 3441, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3441)
      0.16666667 = coord(1/6)
    
    Abstract
    In this article we describe another problem with journal impact factors by showing that one journal's impact factor is dependent on other journals' publication delays. The proposed theoretical model predicts a monotonically decreasing function of the impact factor as a function of publication delay, on condition that the citation curve of the journal is monotone increasing during the publication window used in the calculation of the journal impact factor; otherwise, this function has a reversed U shape. Our findings based on simulations are verified by examining three journals in the information sciences: the Journal of Informetrics, Scientometrics, and the Journal of the Association for Information Science and Technology.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.3, S.780-789
  19. Rousseau, R.: On Egghe's construction of Lorenz curves (2007) 0.00
    0.002495981 = product of:
      0.014975886 = sum of:
        0.014975886 = weight(_text_:information in 521) [ClassicSimilarity], result of:
          0.014975886 = score(doc=521,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.19395474 = fieldWeight in 521, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=521)
      0.16666667 = coord(1/6)
    
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.10, S.1551-1552
  20. Liu, Y.; Rousseau, R.: Towards a representation of diffusion and interaction of scientific ideas : the case of fiber optics communication (2012) 0.00
    0.0024708952 = product of:
      0.014825371 = sum of:
        0.014825371 = weight(_text_:information in 2723) [ClassicSimilarity], result of:
          0.014825371 = score(doc=2723,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.1920054 = fieldWeight in 2723, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2723)
      0.16666667 = coord(1/6)
    
    Abstract
    The research question studied in this contribution is how to find an adequate representation to describe the diffusion of scientific ideas over time. We claim that citation data, at least of articles that act as concept symbols, can be considered to contain this information. As a case study we show how the founding article by Nobel Prize winner Kao illustrates the evolution of the field of fiber optics communication. We use a continuous description of discrete citation data in order to accentuate turning points and breakthroughs in the history of this field. Applying the principles explained in this contribution informetrics may reveal the trajectories along which science is developing.
    Source
    Information processing and management. 48(2012) no.4, S.791-801