Search (96 results, page 1 of 5)

  • × theme_ss:"Automatisches Abstracting"
  1. Goh, A.; Hui, S.C.: TES: a text extraction system (1996) 0.02
    0.01593281 = product of:
      0.04779843 = sum of:
        0.023961417 = weight(_text_:information in 6599) [ClassicSimilarity], result of:
          0.023961417 = score(doc=6599,freq=8.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.3103276 = fieldWeight in 6599, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=6599)
        0.023837011 = product of:
          0.047674023 = sum of:
            0.047674023 = weight(_text_:22 in 6599) [ClassicSimilarity], result of:
              0.047674023 = score(doc=6599,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.30952093 = fieldWeight in 6599, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6599)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    With the onset of the information explosion arising from digital libraries and access to a wealth of information through the Internet, the need to efficiently determine the relevance of a document becomes even more urgent. Describes a text extraction system (TES), which retrieves a set of sentences from a document to form an indicative abstract. Such an automated process enables information to be filtered more quickly. Discusses the combination of various text extraction techniques. Compares results with manually produced abstracts
    Date
    26. 2.1997 10:22:43
    Source
    Microcomputers for information management. 13(1996) no.1, S.41-55
  2. Jones, P.A.; Bradbeer, P.V.G.: Discovery of optimal weights in a concept selection system (1996) 0.01
    0.013593431 = product of:
      0.04078029 = sum of:
        0.016943282 = weight(_text_:information in 6974) [ClassicSimilarity], result of:
          0.016943282 = score(doc=6974,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.21943474 = fieldWeight in 6974, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=6974)
        0.023837011 = product of:
          0.047674023 = sum of:
            0.047674023 = weight(_text_:22 in 6974) [ClassicSimilarity], result of:
              0.047674023 = score(doc=6974,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.30952093 = fieldWeight in 6974, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6974)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Source
    Information retrieval: new systems and current research. Proceedings of the 16th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Drymen, Scotland, 22-23 Mar 94. Ed.: R. Leon
  3. Vanderwende, L.; Suzuki, H.; Brockett, J.M.; Nenkova, A.: Beyond SumBasic : task-focused summarization with sentence simplification and lexical expansion (2007) 0.01
    0.010195073 = product of:
      0.030585218 = sum of:
        0.012707461 = weight(_text_:information in 948) [ClassicSimilarity], result of:
          0.012707461 = score(doc=948,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.16457605 = fieldWeight in 948, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=948)
        0.017877758 = product of:
          0.035755515 = sum of:
            0.035755515 = weight(_text_:22 in 948) [ClassicSimilarity], result of:
              0.035755515 = score(doc=948,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.23214069 = fieldWeight in 948, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=948)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    In recent years, there has been increased interest in topic-focused multi-document summarization. In this task, automatic summaries are produced in response to a specific information request, or topic, stated by the user. The system we have designed to accomplish this task comprises four main components: a generic extractive summarization system, a topic-focusing component, sentence simplification, and lexical expansion of topic words. This paper details each of these components, together with experiments designed to quantify their individual contributions. We include an analysis of our results on two large datasets commonly used to evaluate task-focused summarization, the DUC2005 and DUC2006 datasets, using automatic metrics. Additionally, we include an analysis of our results on the DUC2006 task according to human evaluation metrics. In the human evaluation of system summaries compared to human summaries, i.e., the Pyramid method, our system ranked first out of 22 systems in terms of overall mean Pyramid score; and in the human evaluation of summary responsiveness to the topic, our system ranked third out of 35 systems.
    Source
    Information processing and management. 43(2007) no.6, S.1606-1618
  4. Jiang, Y.; Meng, R.; Huang, Y.; Lu, W.; Liu, J.: Generating keyphrases for readers : a controllable keyphrase generation framework (2023) 0.01
    0.009958006 = product of:
      0.02987402 = sum of:
        0.014975886 = weight(_text_:information in 1012) [ClassicSimilarity], result of:
          0.014975886 = score(doc=1012,freq=8.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.19395474 = fieldWeight in 1012, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1012)
        0.0148981325 = product of:
          0.029796265 = sum of:
            0.029796265 = weight(_text_:22 in 1012) [ClassicSimilarity], result of:
              0.029796265 = score(doc=1012,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.19345059 = fieldWeight in 1012, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1012)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    With the wide application of keyphrases in many Information Retrieval (IR) and Natural Language Processing (NLP) tasks, automatic keyphrase prediction has been emerging. However, these statistically important phrases are contributing increasingly less to the related tasks because the end-to-end learning mechanism enables models to learn the important semantic information of the text directly. Similarly, keyphrases are of little help for readers to quickly grasp the paper's main idea because the relationship between the keyphrase and the paper is not explicit to readers. Therefore, we propose to generate keyphrases with specific functions for readers to bridge the semantic gap between them and the information producers, and verify the effectiveness of the keyphrase function for assisting users' comprehension with a user experiment. A controllable keyphrase generation framework (the CKPG) that uses the keyphrase function as a control code to generate categorized keyphrases is proposed and implemented based on Transformer, BART, and T5, respectively. For the Computer Science domain, the Macro-avgs of , , and on the Paper with Code dataset are up to 0.680, 0.535, and 0.558, respectively. Our experimental results indicate the effectiveness of the CKPG models.
    Date
    22. 6.2023 14:55:20
    Source
    Journal of the Association for Information Science and Technology. 74(2023) no.7, S.759-774
  5. Oh, H.; Nam, S.; Zhu, Y.: Structured abstract summarization of scientific articles : summarization using full-text section information (2023) 0.01
    0.009289211 = product of:
      0.02786763 = sum of:
        0.0129694985 = weight(_text_:information in 889) [ClassicSimilarity], result of:
          0.0129694985 = score(doc=889,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.16796975 = fieldWeight in 889, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=889)
        0.0148981325 = product of:
          0.029796265 = sum of:
            0.029796265 = weight(_text_:22 in 889) [ClassicSimilarity], result of:
              0.029796265 = score(doc=889,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.19345059 = fieldWeight in 889, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=889)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    The automatic summarization of scientific articles differs from other text genres because of the structured format and longer text length. Previous approaches have focused on tackling the lengthy nature of scientific articles, aiming to improve the computational efficiency of summarizing long text using a flat, unstructured abstract. However, the structured format of scientific articles and characteristics of each section have not been fully explored, despite their importance. The lack of a sufficient investigation and discussion of various characteristics for each section and their influence on summarization results has hindered the practical use of automatic summarization for scientific articles. To provide a balanced abstract proportionally emphasizing each section of a scientific article, the community introduced the structured abstract, an abstract with distinct, labeled sections. Using this information, in this study, we aim to understand tasks ranging from data preparation to model evaluation from diverse viewpoints. Specifically, we provide a preprocessed large-scale dataset and propose a summarization method applying the introduction, methods, results, and discussion (IMRaD) format reflecting the characteristics of each section. We also discuss the objective benchmarks and perspectives of state-of-the-art algorithms and present the challenges and research directions in this area.
    Date
    22. 1.2023 18:57:12
    Source
    Journal of the Association for Information Science and Technology. 74(2023) no.2, S.234-248
  6. Wu, Y.-f.B.; Li, Q.; Bot, R.S.; Chen, X.: Finding nuggets in documents : a machine learning approach (2006) 0.01
    0.0074620256 = product of:
      0.022386076 = sum of:
        0.007487943 = weight(_text_:information in 5290) [ClassicSimilarity], result of:
          0.007487943 = score(doc=5290,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.09697737 = fieldWeight in 5290, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5290)
        0.0148981325 = product of:
          0.029796265 = sum of:
            0.029796265 = weight(_text_:22 in 5290) [ClassicSimilarity], result of:
              0.029796265 = score(doc=5290,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.19345059 = fieldWeight in 5290, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5290)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    22. 7.2006 17:25:48
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.6, S.740-752
  7. Kim, H.H.; Kim, Y.H.: Generic speech summarization of transcribed lecture videos : using tags and their semantic relations (2016) 0.01
    0.0074620256 = product of:
      0.022386076 = sum of:
        0.007487943 = weight(_text_:information in 2640) [ClassicSimilarity], result of:
          0.007487943 = score(doc=2640,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.09697737 = fieldWeight in 2640, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2640)
        0.0148981325 = product of:
          0.029796265 = sum of:
            0.029796265 = weight(_text_:22 in 2640) [ClassicSimilarity], result of:
              0.029796265 = score(doc=2640,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.19345059 = fieldWeight in 2640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2640)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    22. 1.2016 12:29:41
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.2, S.366-379
  8. Bateman, J.; Teich, E.: Selective information presentation in an integrated publication system : an application of genre-driven text generation (1995) 0.00
    0.0049417904 = product of:
      0.029650742 = sum of:
        0.029650742 = weight(_text_:information in 2928) [ClassicSimilarity], result of:
          0.029650742 = score(doc=2928,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.3840108 = fieldWeight in 2928, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=2928)
      0.16666667 = coord(1/6)
    
    Source
    Information processing and management. 31(1995) no.5, S.753-767
  9. Pinto, M.: Engineering the production of meta-information : the abstracting concern (2003) 0.00
    0.0049417904 = product of:
      0.029650742 = sum of:
        0.029650742 = weight(_text_:information in 4667) [ClassicSimilarity], result of:
          0.029650742 = score(doc=4667,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.3840108 = fieldWeight in 4667, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=4667)
      0.16666667 = coord(1/6)
    
    Source
    Journal of information science. 29(2003) no.5, S.405-418
  10. McKeown, K.; Robin, J.; Kukich, K.: Generating concise natural language summaries (1995) 0.00
    0.0043231663 = product of:
      0.025938997 = sum of:
        0.025938997 = weight(_text_:information in 2932) [ClassicSimilarity], result of:
          0.025938997 = score(doc=2932,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.3359395 = fieldWeight in 2932, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=2932)
      0.16666667 = coord(1/6)
    
    Abstract
    Description of the problems for summary generation, the applications developed (for basket ball games - STREAK and for telephone network planning activity - PLANDOC), the linguistic constructions that the systems use to convey information concisely and the textual constraints that determine what information gets included
    Source
    Information processing and management. 31(1995) no.5, S.703-733
  11. Paice, C.D.: Automatic abstracting (1994) 0.00
    0.00399357 = product of:
      0.023961417 = sum of:
        0.023961417 = weight(_text_:information in 1255) [ClassicSimilarity], result of:
          0.023961417 = score(doc=1255,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.3103276 = fieldWeight in 1255, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.125 = fieldNorm(doc=1255)
      0.16666667 = coord(1/6)
    
    Source
    Encyclopedia of library and information science. Vol.53, [=Suppl.16]
  12. Robin, J.; McKeown, K.: Empirically designing and evaluating a new revision-based model for summary generation (1996) 0.00
    0.0039728354 = product of:
      0.023837011 = sum of:
        0.023837011 = product of:
          0.047674023 = sum of:
            0.047674023 = weight(_text_:22 in 6751) [ClassicSimilarity], result of:
              0.047674023 = score(doc=6751,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.30952093 = fieldWeight in 6751, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6751)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    6. 3.1997 16:22:15
  13. Ouyang, Y.; Li, W.; Li, S.; Lu, Q.: Intertopic information mining for query-based summarization (2010) 0.00
    0.0037439712 = product of:
      0.022463826 = sum of:
        0.022463826 = weight(_text_:information in 3459) [ClassicSimilarity], result of:
          0.022463826 = score(doc=3459,freq=18.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.2909321 = fieldWeight in 3459, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3459)
      0.16666667 = coord(1/6)
    
    Abstract
    In this article, the authors address the problem of sentence ranking in summarization. Although most existing summarization approaches are concerned with the information embodied in a particular topic (including a set of documents and an associated query) for sentence ranking, they propose a novel ranking approach that incorporates intertopic information mining. Intertopic information, in contrast to intratopic information, is able to reveal pairwise topic relationships and thus can be considered as the bridge across different topics. In this article, the intertopic information is used for transferring word importance learned from known topics to unknown topics under a learning-based summarization framework. To mine this information, the authors model the topic relationship by clustering all the words in both known and unknown topics according to various kinds of word conceptual labels, which indicate the roles of the words in the topic. Based on the mined relationships, we develop a probabilistic model using manually generated summaries provided for known topics to predict ranking scores for sentences in unknown topics. A series of experiments have been conducted on the Document Understanding Conference (DUC) 2006 data set. The evaluation results show that intertopic information is indeed effective for sentence ranking and the resultant summarization system performs comparably well to the best-performing DUC participating systems on the same data set.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.5, S.1062-1072
  14. Maybury, M.T.: Generating summaries from event data (1995) 0.00
    0.0036683278 = product of:
      0.022009967 = sum of:
        0.022009967 = weight(_text_:information in 2349) [ClassicSimilarity], result of:
          0.022009967 = score(doc=2349,freq=12.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.2850541 = fieldWeight in 2349, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2349)
      0.16666667 = coord(1/6)
    
    Abstract
    Summarization entails analysis of source material, selection of key information, condensation of this, and generation of a compct summary form. While there habe been many investigations into the automatic summarization of text, relatively little attention has been given to the summarization of information from structured information sources such as data of knowledge bases, despite this being a desirable capability for a number of application areas including report generation from databases (e.g. weather, financial, medical) and simulation (e.g. military, manufacturing, aconomic). After a brief introduction indicating the main elements of summarization and referring to some illustrative approaches to it, considers pecific issues in the generation of text summaries of event data, describes a system, SumGen, which selects key information from an event database by reasoning about event frequencies, frequencies of relations between events, and domain specific importance measures. Describes how Sum Gen then aggregates similar information and plans a summary presentations tailored to stereotypical users
    Source
    Information processing and management. 31(1995) no.5, S.735-751
  15. Kuhlen, R.: Abstracts, abstracting : intellektuelle und maschinelle Verfahren (1990) 0.00
    0.0034943735 = product of:
      0.020966241 = sum of:
        0.020966241 = weight(_text_:information in 2333) [ClassicSimilarity], result of:
          0.020966241 = score(doc=2333,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.27153665 = fieldWeight in 2333, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=2333)
      0.16666667 = coord(1/6)
    
    Source
    Grundlagen der praktischen Information und Dokumentation. 3. Aufl. Hrsg.: M. Buder u.a. Bd.1
  16. Craven, T.C.: Presentation of repeated phrases in a computer-assisted abstracting tool kit (2001) 0.00
    0.0034943735 = product of:
      0.020966241 = sum of:
        0.020966241 = weight(_text_:information in 3667) [ClassicSimilarity], result of:
          0.020966241 = score(doc=3667,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.27153665 = fieldWeight in 3667, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=3667)
      0.16666667 = coord(1/6)
    
    Source
    Information processing and management. 37(2001) no.2, S.221-230
  17. Endres-Niggemeyer, B.: SimSum : an empirically founded simulation of summarizing (2000) 0.00
    0.0034943735 = product of:
      0.020966241 = sum of:
        0.020966241 = weight(_text_:information in 3343) [ClassicSimilarity], result of:
          0.020966241 = score(doc=3343,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.27153665 = fieldWeight in 3343, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=3343)
      0.16666667 = coord(1/6)
    
    Source
    Information processing and management. 36(2000) no.4, S.659-682
  18. Harabagiu, S.; Hickl, A.; Lacatusu, F.: Satisfying information needs with multi-document summaries (2007) 0.00
    0.0034585332 = product of:
      0.020751199 = sum of:
        0.020751199 = weight(_text_:information in 939) [ClassicSimilarity], result of:
          0.020751199 = score(doc=939,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.2687516 = fieldWeight in 939, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=939)
      0.16666667 = coord(1/6)
    
    Abstract
    Generating summaries that meet the information needs of a user relies on (1) several forms of question decomposition; (2) different summarization approaches; and (3) textual inference for combining the summarization strategies. This novel framework for summarization has the advantage of producing highly responsive summaries, as indicated by the evaluation results.
    Source
    Information processing and management. 43(2007) no.6, S.1619-1642
  19. Steinberger, J.; Poesio, M.; Kabadjov, M.A.; Jezek, K.: Two uses of anaphora resolution in summarization (2007) 0.00
    0.00334871 = product of:
      0.02009226 = sum of:
        0.02009226 = weight(_text_:information in 949) [ClassicSimilarity], result of:
          0.02009226 = score(doc=949,freq=10.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.2602176 = fieldWeight in 949, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=949)
      0.16666667 = coord(1/6)
    
    Abstract
    We propose a new method for using anaphoric information in Latent Semantic Analysis (lsa), and discuss its application to develop an lsa-based summarizer which achieves a significantly better performance than a system not using anaphoric information, and a better performance by the rouge measure than all but one of the single-document summarizers participating in DUC-2002. Anaphoric information is automatically extracted using a new release of our own anaphora resolution system, guitar, which incorporates proper noun resolution. Our summarizer also includes a new approach for automatically identifying the dimensionality reduction of a document on the basis of the desired summarization percentage. Anaphoric information is also used to check the coherence of the summary produced by our summarizer, by a reference checker module which identifies anaphoric resolution errors caused by sentence extraction.
    Source
    Information processing and management. 43(2007) no.6, S.1663-1680
  20. Sweeney, S.; Crestani, F.; Losada, D.E.: 'Show me more' : incremental length summarisation using novelty detection (2008) 0.00
    0.0030569402 = product of:
      0.01834164 = sum of:
        0.01834164 = weight(_text_:information in 2054) [ClassicSimilarity], result of:
          0.01834164 = score(doc=2054,freq=12.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.23754507 = fieldWeight in 2054, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2054)
      0.16666667 = coord(1/6)
    
    Abstract
    The paper presents a study investigating the effects of incorporating novelty detection in automatic text summarisation. Condensing a textual document, automatic text summarisation can reduce the need to refer to the source document. It also offers a means to deliver device-friendly content when accessing information in non-traditional environments. An effective method of summarisation could be to produce a summary that includes only novel information. However, a consequence of focusing exclusively on novel parts may result in a loss of context, which may have an impact on the correct interpretation of the summary, with respect to the source document. In this study we compare two strategies to produce summaries that incorporate novelty in different ways: a constant length summary, which contains only novel sentences, and an incremental summary, containing additional sentences that provide context. The aim is to establish whether a summary that contains only novel sentences provides sufficient basis to determine relevance of a document, or if indeed we need to include additional sentences to provide context. Findings from the study seem to suggest that there is only a minimal difference in performance for the tasks we set our users and that the presence of contextual information is not so important. However, for the case of mobile information access, a summary that contains only novel information does offer benefits, given bandwidth constraints.
    Source
    Information processing and management. 44(2008) no.2, S.663-686

Years

Languages

  • e 85
  • d 10
  • chi 1
  • More… Less…

Types

  • a 92
  • m 2
  • el 1
  • r 1
  • s 1
  • More… Less…