Search (125 results, page 1 of 7)

  • × theme_ss:"Data Mining"
  1. Short, M.: Text mining and subject analysis for fiction; or, using machine learning and information extraction to assign subject headings to dime novels (2019) 0.08
    0.084560595 = product of:
      0.16912119 = sum of:
        0.010483121 = weight(_text_:information in 5481) [ClassicSimilarity], result of:
          0.010483121 = score(doc=5481,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.13576832 = fieldWeight in 5481, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5481)
        0.10706388 = weight(_text_:united in 5481) [ClassicSimilarity], result of:
          0.10706388 = score(doc=5481,freq=2.0), product of:
            0.24675635 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.043984205 = queryNorm
            0.433885 = fieldWeight in 5481, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5481)
        0.05157419 = product of:
          0.10314838 = sum of:
            0.10314838 = weight(_text_:states in 5481) [ClassicSimilarity], result of:
              0.10314838 = score(doc=5481,freq=2.0), product of:
                0.24220218 = queryWeight, product of:
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.043984205 = queryNorm
                0.42587718 = fieldWeight in 5481, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5481)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    This article describes multiple experiments in text mining at Northern Illinois University that were undertaken to improve the efficiency and accuracy of cataloging. It focuses narrowly on subject analysis of dime novels, a format of inexpensive fiction that was popular in the United States between 1860 and 1915. NIU holds more than 55,000 dime novels in its collections, which it is in the process of comprehensively digitizing. Classification, keyword extraction, named-entity recognition, clustering, and topic modeling are discussed as means of assigning subject headings to improve their discoverability by researchers and to increase the productivity of digitization workflows.
  2. Mining text data (2012) 0.03
    0.03181587 = product of:
      0.095447615 = sum of:
        0.008471641 = weight(_text_:information in 362) [ClassicSimilarity], result of:
          0.008471641 = score(doc=362,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.10971737 = fieldWeight in 362, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=362)
        0.08697598 = weight(_text_:networks in 362) [ClassicSimilarity], result of:
          0.08697598 = score(doc=362,freq=8.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.4180698 = fieldWeight in 362, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.03125 = fieldNorm(doc=362)
      0.33333334 = coord(2/6)
    
    Abstract
    Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.
    Content
    Inhalt: An Introduction to Text Mining.- Information Extraction from Text.- A Survey of Text Summarization Techniques.- A Survey of Text Clustering Algorithms.- Dimensionality Reduction and Topic Modeling.- A Survey of Text Classification Algorithms.- Transfer Learning for Text Mining.- Probabilistic Models for Text Mining.- Mining Text Streams.- Translingual Mining from Text Data.- Text Mining in Multimedia.- Text Analytics in Social Media.- A Survey of Opinion Mining and Sentiment Analysis.- Biomedical Text Mining: A Survey of Recent Progress.- Index.
    LCSH
    Computer Communication Networks
    Subject
    Computer Communication Networks
  3. Leydesdorff, L.; Persson, O.: Mapping the geography of science : distribution patterns and networks of relations among cities and institutes (2010) 0.03
    0.025979813 = product of:
      0.077939436 = sum of:
        0.012707461 = weight(_text_:information in 3704) [ClassicSimilarity], result of:
          0.012707461 = score(doc=3704,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.16457605 = fieldWeight in 3704, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3704)
        0.06523198 = weight(_text_:networks in 3704) [ClassicSimilarity], result of:
          0.06523198 = score(doc=3704,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.31355235 = fieldWeight in 3704, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.046875 = fieldNorm(doc=3704)
      0.33333334 = coord(2/6)
    
    Abstract
    Using Google Earth, Google Maps, and/or network visualization programs such as Pajek, one can overlay the network of relations among addresses in scientific publications onto the geographic map. The authors discuss the pros and cons of various options, and provide software (freeware) for bridging existing gaps between the Science Citation Indices (Thomson Reuters) and Scopus (Elsevier), on the one hand, and these various visualization tools on the other. At the level of city names, the global map can be drawn reliably on the basis of the available address information. At the level of the names of organizations and institutes, there are problems of unification both in the ISI databases and with Scopus. Pajek enables a combination of visualization and statistical analysis, whereas the Google Maps and its derivatives provide superior tools on the Internet.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.8, S.1622-1634
  4. Whittle, M.; Eaglestone, B.; Ford, N.; Gillet, V.J.; Madden, A.: Data mining of search engine logs (2007) 0.02
    0.024739172 = product of:
      0.07421751 = sum of:
        0.0089855315 = weight(_text_:information in 1330) [ClassicSimilarity], result of:
          0.0089855315 = score(doc=1330,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.116372846 = fieldWeight in 1330, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1330)
        0.06523198 = weight(_text_:networks in 1330) [ClassicSimilarity], result of:
          0.06523198 = score(doc=1330,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.31355235 = fieldWeight in 1330, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.046875 = fieldNorm(doc=1330)
      0.33333334 = coord(2/6)
    
    Abstract
    This article reports on the development of a novel method for the analysis of Web logs. The method uses techniques that look for similarities between queries and identify sequences of query transformation. It allows sequences of query transformations to be represented as graphical networks, thereby giving a richer view of search behavior than is possible with the usual sequential descriptions. We also perform a basic analysis to study the correlations between observed transformation codes, with results that appear to show evidence of behavior habits. The method was developed using transaction logs from the Excite search engine to provide a tool for an ongoing research project that is endeavoring to develop a greater understanding of Web-based searching by the general public.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.14, S.2382-2400
  5. Berendt, B.; Krause, B.; Kolbe-Nusser, S.: Intelligent scientific authoring tools : interactive data mining for constructive uses of citation networks (2010) 0.02
    0.024739172 = product of:
      0.07421751 = sum of:
        0.0089855315 = weight(_text_:information in 4226) [ClassicSimilarity], result of:
          0.0089855315 = score(doc=4226,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.116372846 = fieldWeight in 4226, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4226)
        0.06523198 = weight(_text_:networks in 4226) [ClassicSimilarity], result of:
          0.06523198 = score(doc=4226,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.31355235 = fieldWeight in 4226, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.046875 = fieldNorm(doc=4226)
      0.33333334 = coord(2/6)
    
    Source
    Information processing and management. 46(2010) no.1, S.1-10
  6. Haravu, L.J.; Neelameghan, A.: Text mining and data mining in knowledge organization and discovery : the making of knowledge-based products (2003) 0.02
    0.02244316 = product of:
      0.06732948 = sum of:
        0.0129694985 = weight(_text_:information in 5653) [ClassicSimilarity], result of:
          0.0129694985 = score(doc=5653,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.16796975 = fieldWeight in 5653, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5653)
        0.054359984 = weight(_text_:networks in 5653) [ClassicSimilarity], result of:
          0.054359984 = score(doc=5653,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.26129362 = fieldWeight in 5653, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5653)
      0.33333334 = coord(2/6)
    
    Abstract
    Discusses the importance of knowledge organization in the context of the information overload caused by the vast quantities of data and information accessible on internal and external networks of an organization. Defines the characteristics of a knowledge-based product. Elaborates on the techniques and applications of text mining in developing knowledge products. Presents two approaches, as case studies, to the making of knowledge products: (1) steps and processes in the planning, designing and development of a composite multilingual multimedia CD product, with the potential international, inter-cultural end users in view, and (2) application of natural language processing software in text mining. Using a text mining software, it is possible to link concept terms from a processed text to a related thesaurus, glossary, schedules of a classification scheme, and facet structured subject representations. Concludes that the products of text mining and data mining could be made more useful if the features of a faceted scheme for subject classification are incorporated into text mining techniques and products.
    Content
    Beitrag eines Themenheftes "Knowledge organization and classification in international information retrieval"
  7. Nicholson, S.: Bibliomining for automated collection development in a digital library setting : using data mining to discover Web-based scholarly research works (2003) 0.02
    0.021649845 = product of:
      0.064949535 = sum of:
        0.01058955 = weight(_text_:information in 1867) [ClassicSimilarity], result of:
          0.01058955 = score(doc=1867,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.13714671 = fieldWeight in 1867, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1867)
        0.054359984 = weight(_text_:networks in 1867) [ClassicSimilarity], result of:
          0.054359984 = score(doc=1867,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.26129362 = fieldWeight in 1867, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1867)
      0.33333334 = coord(2/6)
    
    Abstract
    This research creates an intelligent agent for automated collection development in a digital library setting. It uses a predictive model based an facets of each Web page to select scholarly works. The criteria came from the academic library selection literature, and a Delphi study was used to refine the list to 41 criteria. A Perl program was designed to analyze a Web page for each criterion and applied to a large collection of scholarly and nonscholarly Web pages. Bibliomining, or data mining for libraries, was then used to create different classification models. Four techniques were used: logistic regression, nonparametric discriminant analysis, classification trees, and neural networks. Accuracy and return were used to judge the effectiveness of each model an test datasets. In addition, a set of problematic pages that were difficult to classify because of their similarity to scholarly research was gathered and classified using the models. The resulting models could be used in the selection process to automatically create a digital library of Webbased scholarly research works. In addition, the technique can be extended to create a digital library of any type of structured electronic information.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.12, S.1081-1090
  8. Chowdhury, G.G.: Template mining for information extraction from digital documents (1999) 0.02
    0.02089367 = product of:
      0.06268101 = sum of:
        0.020966241 = weight(_text_:information in 4577) [ClassicSimilarity], result of:
          0.020966241 = score(doc=4577,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.27153665 = fieldWeight in 4577, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=4577)
        0.04171477 = product of:
          0.08342954 = sum of:
            0.08342954 = weight(_text_:22 in 4577) [ClassicSimilarity], result of:
              0.08342954 = score(doc=4577,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.5416616 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4577)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    2. 4.2000 18:01:22
  9. Borgman, C.L.; Wofford, M.F.; Golshan, M.S.; Darch, P.T.: Collaborative qualitative research at scale : reflections on 20 years of acquiring global data and making data global (2021) 0.02
    0.020615976 = product of:
      0.061847925 = sum of:
        0.007487943 = weight(_text_:information in 239) [ClassicSimilarity], result of:
          0.007487943 = score(doc=239,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.09697737 = fieldWeight in 239, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=239)
        0.054359984 = weight(_text_:networks in 239) [ClassicSimilarity], result of:
          0.054359984 = score(doc=239,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.26129362 = fieldWeight in 239, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=239)
      0.33333334 = coord(2/6)
    
    Abstract
    A 5-year project to study scientific data uses in geography, starting in 1999, evolved into 20 years of research on data practices in sensor networks, environmental sciences, biology, seismology, undersea science, biomedicine, astronomy, and other fields. By emulating the "team science" approaches of the scientists studied, the UCLA Center for Knowledge Infrastructures accumulated a comprehensive collection of qualitative data about how scientists generate, manage, use, and reuse data across domains. Building upon Paul N. Edwards's model of "making global data"-collecting signals via consistent methods, technologies, and policies-to "make data global"-comparing and integrating those data, the research team has managed and exploited these data as a collaborative resource. This article reflects on the social, technical, organizational, economic, and policy challenges the team has encountered in creating new knowledge from data old and new. We reflect on continuity over generations of students and staff, transitions between grants, transfer of legacy data between software tools, research methods, and the role of professional data managers in the social sciences.
    Source
    Journal of the Association for Information Science and Technology. 72(2021) no.6, S.667-682
  10. Information visualization in data mining and knowledge discovery (2002) 0.02
    0.017532133 = product of:
      0.052596398 = sum of:
        0.011206927 = weight(_text_:information in 1789) [ClassicSimilarity], result of:
          0.011206927 = score(doc=1789,freq=28.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.14514244 = fieldWeight in 1789, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.041389473 = sum of:
          0.029470965 = weight(_text_:states in 1789) [ClassicSimilarity], result of:
            0.029470965 = score(doc=1789,freq=2.0), product of:
              0.24220218 = queryWeight, product of:
                5.506572 = idf(docFreq=487, maxDocs=44218)
                0.043984205 = queryNorm
              0.121679194 = fieldWeight in 1789, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.506572 = idf(docFreq=487, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
          0.011918506 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
            0.011918506 = score(doc=1789,freq=2.0), product of:
              0.1540252 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043984205 = queryNorm
              0.07738023 = fieldWeight in 1789, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
      0.33333334 = coord(2/6)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    Rez. in: JASIST 54(2003) no.9, S.905-906 (C.A. Badurek): "Visual approaches for knowledge discovery in very large databases are a prime research need for information scientists focused an extracting meaningful information from the ever growing stores of data from a variety of domains, including business, the geosciences, and satellite and medical imagery. This work presents a summary of research efforts in the fields of data mining, knowledge discovery, and data visualization with the goal of aiding the integration of research approaches and techniques from these major fields. The editors, leading computer scientists from academia and industry, present a collection of 32 papers from contributors who are incorporating visualization and data mining techniques through academic research as well application development in industry and government agencies. Information Visualization focuses upon techniques to enhance the natural abilities of humans to visually understand data, in particular, large-scale data sets. It is primarily concerned with developing interactive graphical representations to enable users to more intuitively make sense of multidimensional data as part of the data exploration process. It includes research from computer science, psychology, human-computer interaction, statistics, and information science. Knowledge Discovery in Databases (KDD) most often refers to the process of mining databases for previously unknown patterns and trends in data. Data mining refers to the particular computational methods or algorithms used in this process. The data mining research field is most related to computational advances in database theory, artificial intelligence and machine learning. This work compiles research summaries from these main research areas in order to provide "a reference work containing the collection of thoughts and ideas of noted researchers from the fields of data mining and data visualization" (p. 8). It addresses these areas in three main sections: the first an data visualization, the second an KDD and model visualization, and the last an using visualization in the knowledge discovery process. The seven chapters of Part One focus upon methodologies and successful techniques from the field of Data Visualization. Hoffman and Grinstein (Chapter 2) give a particularly good overview of the field of data visualization and its potential application to data mining. An introduction to the terminology of data visualization, relation to perceptual and cognitive science, and discussion of the major visualization display techniques are presented. Discussion and illustration explain the usefulness and proper context of such data visualization techniques as scatter plots, 2D and 3D isosurfaces, glyphs, parallel coordinates, and radial coordinate visualizations. Remaining chapters present the need for standardization of visualization methods, discussion of user requirements in the development of tools, and examples of using information visualization in addressing research problems.
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
    With contributors almost exclusively from the computer science field, the intended audience of this work is heavily slanted towards a computer science perspective. However, it is highly readable and provides introductory material that would be useful to information scientists from a variety of domains. Yet, much interesting work in information visualization from other fields could have been included giving the work more of an interdisciplinary perspective to complement their goals of integrating work in this area. Unfortunately, many of the application chapters are these, shallow, and lack complementary illustrations of visualization techniques or user interfaces used. However, they do provide insight into the many applications being developed in this rapidly expanding field. The authors have successfully put together a highly useful reference text for the data mining and information visualization communities. Those interested in a good introduction and overview of complementary research areas in these fields will be satisfied with this collection of papers. The focus upon integrating data visualization with data mining complements texts in each of these fields, such as Advances in Knowledge Discovery and Data Mining (Fayyad et al., MIT Press) and Readings in Information Visualization: Using Vision to Think (Card et. al., Morgan Kauffman). This unique work is a good starting point for future interaction between researchers in the fields of data visualization and data mining and makes a good accompaniment for a course focused an integrating these areas or to the main reference texts in these fields."
    LCSH
    Information visualization
    RSWK
    Information Retrieval (BVB)
    Subject
    Information Retrieval (BVB)
    Information visualization
  11. Kantardzic, M.: Data mining : concepts, models, methods, and algorithms (2003) 0.02
    0.016492782 = product of:
      0.049478345 = sum of:
        0.0059903543 = weight(_text_:information in 2291) [ClassicSimilarity], result of:
          0.0059903543 = score(doc=2291,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.0775819 = fieldWeight in 2291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2291)
        0.04348799 = weight(_text_:networks in 2291) [ClassicSimilarity], result of:
          0.04348799 = score(doc=2291,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.2090349 = fieldWeight in 2291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.03125 = fieldNorm(doc=2291)
      0.33333334 = coord(2/6)
    
    Abstract
    This book offers a comprehensive introduction to the exploding field of data mining. We are surrounded by data, numerical and otherwise, which must be analyzed and processed to convert it into information that informs, instructs, answers, or otherwise aids understanding and decision-making. Due to the ever-increasing complexity and size of today's data sets, a new term, data mining, was created to describe the indirect, automatic data analysis techniques that utilize more complex and sophisticated tools than those which analysts used in the past to do mere data analysis. "Data Mining: Concepts, Models, Methods, and Algorithms" discusses data mining principles and then describes representative state-of-the-art methods and algorithms originating from different disciplines such as statistics, machine learning, neural networks, fuzzy logic, and evolutionary computation. Detailed algorithms are provided with necessary explanations and illustrative examples. This text offers guidance: how and when to use a particular software tool (with their companion data sets) from among the hundreds offered when faced with a data set to mine. This allows analysts to create and perform their own data mining experiments using their knowledge of the methodologies and techniques provided. This book emphasizes the selection of appropriate methodologies and data analysis software, as well as parameter tuning. These critically important, qualitative decisions can only be made with the deeper understanding of parameter meaning and its role in the technique that is offered here. Data mining is an exploding field and this book offers much-needed guidance to selecting among the numerous analysis programs that are available.
  12. Matson, L.D.; Bonski, D.J.: Do digital libraries need librarians? (1997) 0.02
    0.01593281 = product of:
      0.04779843 = sum of:
        0.023961417 = weight(_text_:information in 1737) [ClassicSimilarity], result of:
          0.023961417 = score(doc=1737,freq=8.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.3103276 = fieldWeight in 1737, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1737)
        0.023837011 = product of:
          0.047674023 = sum of:
            0.047674023 = weight(_text_:22 in 1737) [ClassicSimilarity], result of:
              0.047674023 = score(doc=1737,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.30952093 = fieldWeight in 1737, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1737)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Defines digital libraries and discusses the effects of new technology on librarians. Examines the different viewpoints of librarians and information technologists on digital libraries. Describes the development of a digital library at the National Drug Intelligence Center, USA, which was carried out in collaboration with information technology experts. The system is based on Web enabled search technology to find information, data visualization and data mining to visualize it and use of SGML as an information standard to store it
    Date
    22.11.1998 18:57:22
  13. Hofstede, A.H.M. ter; Proper, H.A.; Van der Weide, T.P.: Exploiting fact verbalisation in conceptual information modelling (1997) 0.01
    0.0147661185 = product of:
      0.044298355 = sum of:
        0.02344097 = weight(_text_:information in 2908) [ClassicSimilarity], result of:
          0.02344097 = score(doc=2908,freq=10.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.3035872 = fieldWeight in 2908, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2908)
        0.020857384 = product of:
          0.04171477 = sum of:
            0.04171477 = weight(_text_:22 in 2908) [ClassicSimilarity], result of:
              0.04171477 = score(doc=2908,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.2708308 = fieldWeight in 2908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2908)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Focuses on the information modelling side of conceptual modelling. Deals with the exploitation of fact verbalisations after finishing the actual information system. Verbalisations are used as input for the design of the so-called information model. Exploits these verbalisation in 4 directions: considers their use for a conceptual query language, the verbalisation of instances, the description of the contents of a database and for the verbalisation of queries in a computer supported query environment. Provides an example session with an envisioned tool for end user query formulations that exploits the verbalisation
    Source
    Information systems. 22(1997) nos.5/6, S.349-385
  14. Methodologies for knowledge discovery and data mining : Third Pacific-Asia Conference, PAKDD'99, Beijing, China, April 26-28, 1999, Proceedings (1999) 0.01
    0.012683997 = product of:
      0.07610398 = sum of:
        0.07610398 = weight(_text_:networks in 3821) [ClassicSimilarity], result of:
          0.07610398 = score(doc=3821,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.36581108 = fieldWeight in 3821, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3821)
      0.16666667 = coord(1/6)
    
    Abstract
    The 29 revised full papers presented together with 37 short papers were carefully selected from a total of 158 submissions. The book is divided into sections on emerging KDD technology; association rules; feature selection and generation; mining in semi-unstructured data; interestingness, surprisingness, and exceptions; rough sets, fuzzy logic, and neural networks; induction, classification, and clustering; visualization, causal models and graph-based methods; agent-based and distributed data mining; and advanced topics and new methodologies
  15. Lusti, M.: Data Warehousing and Data Mining : Eine Einführung in entscheidungsunterstützende Systeme (1999) 0.01
    0.011939241 = product of:
      0.03581772 = sum of:
        0.011980709 = weight(_text_:information in 4261) [ClassicSimilarity], result of:
          0.011980709 = score(doc=4261,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.1551638 = fieldWeight in 4261, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=4261)
        0.023837011 = product of:
          0.047674023 = sum of:
            0.047674023 = weight(_text_:22 in 4261) [ClassicSimilarity], result of:
              0.047674023 = score(doc=4261,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.30952093 = fieldWeight in 4261, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4261)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    17. 7.2002 19:22:06
    Theme
    Information Resources Management
  16. Amir, A.; Feldman, R.; Kashi, R.: ¬A new and versatile method for association generation (1997) 0.01
    0.011939241 = product of:
      0.03581772 = sum of:
        0.011980709 = weight(_text_:information in 1270) [ClassicSimilarity], result of:
          0.011980709 = score(doc=1270,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.1551638 = fieldWeight in 1270, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1270)
        0.023837011 = product of:
          0.047674023 = sum of:
            0.047674023 = weight(_text_:22 in 1270) [ClassicSimilarity], result of:
              0.047674023 = score(doc=1270,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.30952093 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1270)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Source
    Information systems. 22(1997) nos.5/6, S.333-347
  17. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.01
    0.008495895 = product of:
      0.025487684 = sum of:
        0.01058955 = weight(_text_:information in 1605) [ClassicSimilarity], result of:
          0.01058955 = score(doc=1605,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.13714671 = fieldWeight in 1605, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1605)
        0.0148981325 = product of:
          0.029796265 = sum of:
            0.029796265 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
              0.029796265 = score(doc=1605,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.19345059 = fieldWeight in 1605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Numerous studies have explored the possibility of uncovering information from web search queries but few have examined the factors that affect web query data sources. We conducted a study that investigated this issue by comparing Google Trends and Baidu Index. Data from these two services are based on queries entered by users into Google and Baidu, two of the largest search engines in the world. We first compared the features and functions of the two services based on documents and extensive testing. We then carried out an empirical study that collected query volume data from the two sources. We found that data from both sources could be used to predict the quality of Chinese universities and companies. Despite the differences between the two services in terms of technology, such as differing methods of language processing, the search volume data from the two were highly correlated and combining the two data sources did not improve the predictive power of the data. However, there was a major difference between the two in terms of data availability. Baidu Index was able to provide more search volume data than Google Trends did. Our analysis showed that the disadvantage of Google Trends in this regard was due to Google's smaller user base in China. The implication of this finding goes beyond China. Google's user bases in many countries are smaller than that in China, so the search volume data related to those countries could result in the same issue as that related to China.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
  18. Hallonsten, O.; Holmberg, D.: Analyzing structural stratification in the Swedish higher education system : data contextualization with policy-history analysis (2013) 0.01
    0.0074620256 = product of:
      0.022386076 = sum of:
        0.007487943 = weight(_text_:information in 668) [ClassicSimilarity], result of:
          0.007487943 = score(doc=668,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.09697737 = fieldWeight in 668, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=668)
        0.0148981325 = product of:
          0.029796265 = sum of:
            0.029796265 = weight(_text_:22 in 668) [ClassicSimilarity], result of:
              0.029796265 = score(doc=668,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.19345059 = fieldWeight in 668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    22. 3.2013 19:43:01
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.3, S.574-586
  19. Fonseca, F.; Marcinkowski, M.; Davis, C.: Cyber-human systems of thought and understanding (2019) 0.01
    0.0074620256 = product of:
      0.022386076 = sum of:
        0.007487943 = weight(_text_:information in 5011) [ClassicSimilarity], result of:
          0.007487943 = score(doc=5011,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.09697737 = fieldWeight in 5011, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5011)
        0.0148981325 = product of:
          0.029796265 = sum of:
            0.029796265 = weight(_text_:22 in 5011) [ClassicSimilarity], result of:
              0.029796265 = score(doc=5011,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.19345059 = fieldWeight in 5011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    7. 3.2019 16:32:22
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.4, S.402-411
  20. Medien-Informationsmanagement : Archivarische, dokumentarische, betriebswirtschaftliche, rechtliche und Berufsbild-Aspekte ; [Frühjahrstagung der Fachgruppe 7 im Jahr 2000 in Weimar und Folgetagung 2001 in Köln] (2003) 0.01
    0.005974803 = product of:
      0.01792441 = sum of:
        0.0089855315 = weight(_text_:information in 1833) [ClassicSimilarity], result of:
          0.0089855315 = score(doc=1833,freq=8.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.116372846 = fieldWeight in 1833, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1833)
        0.008938879 = product of:
          0.017877758 = sum of:
            0.017877758 = weight(_text_:22 in 1833) [ClassicSimilarity], result of:
              0.017877758 = score(doc=1833,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.116070345 = fieldWeight in 1833, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1833)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Als in den siebziger Jahren des vergangenen Jahrhunderts immer häufiger die Bezeichnung Informationsmanager für Leute propagiert wurde, die bis dahin als Dokumentare firmierten, wurde dies in den etablierten Kreisen der Archivare und Bibliothekare gelegentlich belächelt und als Zeichen einer Identitätskrise oder jedenfalls einer Verunsicherung des damit überschriebenen Berufsbilds gewertet. Für den Berufsstand der Medienarchivare/Mediendokumentare, die sich seit 1960 in der Fachgruppe 7 des Vereins, später Verbands deutscher Archivare (VdA) organisieren, gehörte diese Verortung im Zeichen neuer inhaltlicher Herausforderungen (Informationsflut) und Technologien (EDV) allerdings schon früh zu den Selbstverständlichkeiten des Berufsalltags. "Halt, ohne uns geht es nicht!" lautete die Überschrift eines Artikels im Verbandsorgan "Info 7", der sich mit der Einrichtung von immer mächtigeren Leitungsnetzen und immer schnelleren Datenautobahnen beschäftigte. Information, Informationsgesellschaft: diese Begriffe wurden damals fast nur im technischen Sinne verstanden. Die informatisierte, nicht die informierte Gesellschaft stand im Vordergrund - was wiederum Kritiker auf den Plan rief, von Joseph Weizenbaum in den USA bis hin zu den Informations-Ökologen in Bremen. Bei den nationalen, manchmal auch nur regionalen Projekten und Modellversuchen mit Datenautobahnen - auch beim frühen Btx - war nie so recht deutlich geworden, welche Inhalte in welcher Gestalt durch diese Netze und Straßen gejagt werden sollten und wer diese Inhalte eigentlich selektieren, portionieren, positionieren, kurz: managen sollte. Spätestens mit dem World Wide Web sind diese Projekte denn auch obsolet geworden, jedenfalls was die Hardware und Software anging. Geblieben ist das Thema Inhalte (neudeutsch: Content). Und - immer drängender im nicht nur technischen Verständnis - das Thema Informationsmanagement. MedienInformationsManagement war die Frühjahrstagung der Fachgruppe 7 im Jahr 2000 in Weimar überschrieben, und auch die Folgetagung 2001 in Köln, die der multimedialen Produktion einen dokumentarischen Pragmatismus gegenüber stellte, handelte vom Geschäftsfeld Content und von Content-Management-Systemen. Die in diesem 6. Band der Reihe Beiträge zur Mediendokumentation versammelten Vorträge und Diskussionsbeiträge auf diesen beiden Tagungen beleuchten das Titel-Thema aus den verschiedensten Blickwinkeln: archivarischen, dokumentarischen, kaufmännischen, berufsständischen und juristischen. Deutlich wird dabei, daß die Berufsbezeichnung Medienarchivarln/Mediendokumentarln ziemlich genau für all das steht, was heute mit sog. alten wie neuen Medien im organisatorischen, d.h. ordnenden und vermittelnden Sinne geschieht. Im besonderen Maße trifft dies auf das Internet und die aus ihm geborenen Intranets zu. Beide bedürfen genauso der ordnenden Hand, die sich an den alten Medien, an Buch, Zeitung, Tonträger, Film etc. geschult hat, denn sie leben zu großen Teilen davon. Daß das Internet gleichwohl ein Medium sui generis ist und die alten Informationsberufe vor ganz neue Herausforderungen stellt - auch das durchzieht die Beiträge von Weimar und Köln.
    Content
    Enthält u.a. die Beiträge (Dokumentarische Aspekte): Günter Perers/Volker Gaese: Das DocCat-System in der Textdokumentation von Gr+J (Weimar 2000) Thomas Gerick: Finden statt suchen. Knowledge Retrieval in Wissensbanken. Mit organisiertem Wissen zu mehr Erfolg (Weimar 2000) Winfried Gödert: Aufbereitung und Rezeption von Information (Weimar 2000) Elisabeth Damen: Klassifikation als Ordnungssystem im elektronischen Pressearchiv (Köln 2001) Clemens Schlenkrich: Aspekte neuer Regelwerksarbeit - Multimediales Datenmodell für ARD und ZDF (Köln 2001) Josef Wandeler: Comprenez-vous only Bahnhof'? - Mehrsprachigkeit in der Mediendokumentation (Köln 200 1)
    Date
    11. 5.2008 19:49:22
    LCSH
    Information technology / Management / Congresses
    Subject
    Information technology / Management / Congresses

Years

Languages

  • e 108
  • d 16
  • sp 1
  • More… Less…

Types

  • a 105
  • m 15
  • s 14
  • el 4
  • x 1
  • More… Less…