Search (31 results, page 1 of 2)

  • × author_ss:"Larivière, V."
  1. Larivière, V.; Gingras, Y.; Archambault, E.: ¬The decline in the concentration of citations, 1900-2007 (2009) 0.05
    0.047130153 = product of:
      0.094260305 = sum of:
        0.094260305 = sum of:
          0.034061745 = weight(_text_:science in 2763) [ClassicSimilarity], result of:
            0.034061745 = score(doc=2763,freq=4.0), product of:
              0.13793045 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.052363027 = queryNorm
              0.24694869 = fieldWeight in 2763, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.046875 = fieldNorm(doc=2763)
          0.060198557 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
            0.060198557 = score(doc=2763,freq=4.0), product of:
              0.1833664 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052363027 = queryNorm
              0.32829654 = fieldWeight in 2763, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2763)
      0.5 = coord(1/2)
    
    Abstract
    This article challenges recent research (Evans, 2008) reporting that the concentration of cited scientific literature increases with the online availability of articles and journals. Using Thomson Reuters' Web of Science, the present article analyses changes in the concentration of citations received (2- and 5-year citation windows) by papers published between 1900 and 2005. Three measures of concentration are used: the percentage of papers that received at least one citation (cited papers); the percentage of papers needed to account for 20%, 50%, and 80% of the citations; and the Herfindahl-Hirschman index (HHI). These measures are used for four broad disciplines: natural sciences and engineering, medical fields, social sciences, and the humanities. All these measures converge and show that, contrary to what was reported by Evans, the dispersion of citations is actually increasing.
    Date
    22. 3.2009 19:22:35
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.4, S.858-862
  2. Haustein, S.; Sugimoto, C.; Larivière, V.: Social media in scholarly communication : Guest editorial (2015) 0.02
    0.024105787 = product of:
      0.048211575 = sum of:
        0.048211575 = sum of:
          0.026928173 = weight(_text_:science in 3809) [ClassicSimilarity], result of:
            0.026928173 = score(doc=3809,freq=10.0), product of:
              0.13793045 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.052363027 = queryNorm
              0.19523008 = fieldWeight in 3809, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0234375 = fieldNorm(doc=3809)
          0.021283401 = weight(_text_:22 in 3809) [ClassicSimilarity], result of:
            0.021283401 = score(doc=3809,freq=2.0), product of:
              0.1833664 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052363027 = queryNorm
              0.116070345 = fieldWeight in 3809, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0234375 = fieldNorm(doc=3809)
      0.5 = coord(1/2)
    
    Abstract
    This year marks 350 years since the inaugural publications of both the Journal des Sçavans and the Philosophical Transactions, first published in 1665 and considered the birth of the peer-reviewed journal article. This form of scholarly communication has not only remained the dominant model for disseminating new knowledge (particularly for science and medicine), but has also increased substantially in volume. Derek de Solla Price - the "father of scientometrics" (Merton and Garfield, 1986, p. vii) - was the first to document the exponential increase in scientific journals and showed that "scientists have always felt themselves to be awash in a sea of the scientific literature" (Price, 1963, p. 15), as, for example, expressed at the 1948 Royal Society's Scientific Information Conference: Not for the first time in history, but more acutely than ever before, there was a fear that scientists would be overwhelmed, that they would be no longer able to control the vast amounts of potentially relevant material that were pouring forth from the world's presses, that science itself was under threat (Bawden and Robinson, 2008, p. 183).
    One of the solutions to help scientists filter the most relevant publications and, thus, to stay current on developments in their fields during the transition from "little science" to "big science", was the introduction of citation indexing as a Wellsian "World Brain" (Garfield, 1964) of scientific information: It is too much to expect a research worker to spend an inordinate amount of time searching for the bibliographic descendants of antecedent papers. It would not be excessive to demand that the thorough scholar check all papers that have cited or criticized such papers, if they could be located quickly. The citation index makes this check practicable (Garfield, 1955, p. 108). In retrospective, citation indexing can be perceived as a pre-social web version of crowdsourcing, as it is based on the concept that the community of citing authors outperforms indexers in highlighting cognitive links between papers, particularly on the level of specific ideas and concepts (Garfield, 1983). Over the last 50 years, citation analysis and more generally, bibliometric methods, have developed from information retrieval tools to research evaluation metrics, where they are presumed to make scientific funding more efficient and effective (Moed, 2006). However, the dominance of bibliometric indicators in research evaluation has also led to significant goal displacement (Merton, 1957) and the oversimplification of notions of "research productivity" and "scientific quality", creating adverse effects such as salami publishing, honorary authorships, citation cartels, and misuse of indicators (Binswanger, 2015; Cronin and Sugimoto, 2014; Frey and Osterloh, 2006; Haustein and Larivière, 2015; Weingart, 2005).
    Furthermore, the rise of the web, and subsequently, the social web, has challenged the quasi-monopolistic status of the journal as the main form of scholarly communication and citation indices as the primary assessment mechanisms. Scientific communication is becoming more open, transparent, and diverse: publications are increasingly open access; manuscripts, presentations, code, and data are shared online; research ideas and results are discussed and criticized openly on blogs; and new peer review experiments, with open post publication assessment by anonymous or non-anonymous referees, are underway. The diversification of scholarly production and assessment, paired with the increasing speed of the communication process, leads to an increased information overload (Bawden and Robinson, 2008), demanding new filters. The concept of altmetrics, short for alternative (to citation) metrics, was created out of an attempt to provide a filter (Priem et al., 2010) and to steer against the oversimplification of the measurement of scientific success solely on the basis of number of journal articles published and citations received, by considering a wider range of research outputs and metrics (Piwowar, 2013). Although the term altmetrics was introduced in a tweet in 2010 (Priem, 2010), the idea of capturing traces - "polymorphous mentioning" (Cronin et al., 1998, p. 1320) - of scholars and their documents on the web to measure "impact" of science in a broader manner than citations was introduced years before, largely in the context of webometrics (Almind and Ingwersen, 1997; Thelwall et al., 2005):
    Date
    20. 1.2015 18:30:22
  3. Larivière, V.; Macaluso, B.: Improving the coverage of social science and humanities researchers' output : the case of the Érudit journal platform (2011) 0.01
    0.012290972 = product of:
      0.024581945 = sum of:
        0.024581945 = product of:
          0.04916389 = sum of:
            0.04916389 = weight(_text_:science in 4943) [ClassicSimilarity], result of:
              0.04916389 = score(doc=4943,freq=12.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.3564397 = fieldWeight in 4943, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4943)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In non-English-speaking countries the measurement of research output in the social sciences and humanities (SSH) using standard bibliographic databases suffers from a major drawback: the underrepresentation of articles published in local, non-English, journals. Using papers indexed (1) in a local database of periodicals (Érudit) and (2) in the Web of Science, assigned to the population of university professors in the province of Québec, this paper quantifies, for individual researchers and departments, the importance of papers published in local journals. It also analyzes differences across disciplines and between French-speaking and English-speaking universities. The results show that, while the addition of papers published in local journals to bibliometric measures has little effect when all disciplines are considered and for anglophone universities, it increases the output of researchers from francophone universities in the social sciences and humanities by almost a third. It also shows that there is very little relation, at the level of individual researchers or departments, between the output indexed in the Web of Science and the output retrieved from the Érudit database; a clear demonstration that the Web of Science cannot be used as a proxy for the "overall" production of SSH researchers in Québec. The paper concludes with a discussion on these disciplinary and language differences, as well as on their implications for rankings of universities.
    Object
    Web of Science
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.12, S.2437-2442
  4. Shu, F.; Julien, C.-A.; Larivière, V.: Does the Web of Science accurately represent chinese scientific performance? (2019) 0.01
    0.012042644 = product of:
      0.024085289 = sum of:
        0.024085289 = product of:
          0.048170578 = sum of:
            0.048170578 = weight(_text_:science in 5388) [ClassicSimilarity], result of:
              0.048170578 = score(doc=5388,freq=8.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.34923816 = fieldWeight in 5388, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5388)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    With the significant development of China's economy and scientific activity, its scientific publication activity is experiencing a period of rapid growth. However, measuring China's research output remains a challenge because Chinese scholars may publish their research in either international or national journals, yet no bibliometric database covers both the Chinese and English scientific literature. The purpose of this study is to compare Web of Science (WoS) with a Chinese bibliometric database in terms of authors and their performance, demonstrate the extent of the overlap between the two groups of Chinese most productive authors in both international and Chinese bibliometric databases, and determine how different disciplines may affect this overlap. The results of this study indicate that Chinese bibliometric databases, or a combination of WoS and Chinese bibliometric databases, should be used to evaluate Chinese research performance except in the few disciplines in which Chinese research performance could be assessed using WoS only.
    Object
    Web of Science
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.10, S.1138-1152
  5. Larivière, V.; Archambault, V.; Gingras, Y.; Vignola-Gagné, E.: ¬The place of serials in referencing practices : comparing natural sciences and engineering with social sciences and humanities (2006) 0.01
    0.010035537 = product of:
      0.020071074 = sum of:
        0.020071074 = product of:
          0.04014215 = sum of:
            0.04014215 = weight(_text_:science in 5107) [ClassicSimilarity], result of:
              0.04014215 = score(doc=5107,freq=8.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.2910318 = fieldWeight in 5107, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5107)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Journal articles constitute the core documents for the diffusion of knowledge in the natural sciences. It has been argued that the same is not true for the social sciences and humanities where knowledge is more often disseminated in monographs that are not indexed in the journal-based databases used for bibliometric analysis. Previous studies have made only partial assessments of the role played by both serials and other types of literature. The importance of journal literature in the various scientific fields has therefore not been systematically characterized. The authors address this issue by providing a systematic measurement of the role played by journal literature in the building of knowledge in both the natural sciences and engineering and the social sciences and humanities. Using citation data from the CD-ROM versions of the Science Citation Index (SCI), Social Science Citation Index (SSCI), and Arts and Humanities Citation Index (AHCI) databases from 1981 to 2000 (Thomson ISI, Philadelphia, PA), the authors quantify the share of citations to both serials and other types of literature. Variations in time and between fields are also analyzed. The results show that journal literature is increasingly important in the natural and social sciences, but that its role in the humanities is stagnant and has even tended to diminish slightly in the 1990s. Journal literature accounts for less than 50% of the citations in several disciplines of the social sciences and humanities; hence, special care should be used when using bibliometric indicators that rely only on journal literature.
    Object
    Science Citation Index
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.8, S.997-1004
  6. Archambault, E.; Campbell, D; Gingras, Y.; Larivière, V.: Comparing bibliometric statistics obtained from the Web of Science and Scopus (2009) 0.01
    0.010035537 = product of:
      0.020071074 = sum of:
        0.020071074 = product of:
          0.04014215 = sum of:
            0.04014215 = weight(_text_:science in 2933) [ClassicSimilarity], result of:
              0.04014215 = score(doc=2933,freq=8.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.2910318 = fieldWeight in 2933, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2933)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    For more than 40 years, the Institute for Scientific Information (ISI, now part of Thomson Reuters) produced the only available bibliographic databases from which bibliometricians could compile large-scale bibliometric indicators. ISI's citation indexes, now regrouped under the Web of Science (WoS), were the major sources of bibliometric data until 2004, when Scopus was launched by the publisher Reed Elsevier. For those who perform bibliometric analyses and comparisons of countries or institutions, the existence of these two major databases raises the important question of the comparability and stability of statistics obtained from different data sources. This paper uses macrolevel bibliometric indicators to compare results obtained from the WoS and Scopus. It shows that the correlations between the measures obtained with both databases for the number of papers and the number of citations received by countries, as well as for their ranks, are extremely high. There is also a very high correlation when countries' papers are broken down by field. The paper thus provides evidence that indicators of scientific production and citations at the country level are stable and largely independent of the database.
    Object
    Web of Science
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.7, S.1320-1326
  7. Larivière, V.; Sugimoto, C.R.; Cronin, B.: ¬A bibliometric chronicling of library and information science's first hundred years (2012) 0.01
    0.010035537 = product of:
      0.020071074 = sum of:
        0.020071074 = product of:
          0.04014215 = sum of:
            0.04014215 = weight(_text_:science in 244) [ClassicSimilarity], result of:
              0.04014215 = score(doc=244,freq=8.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.2910318 = fieldWeight in 244, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=244)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper presents a condensed history of Library and Information Science (LIS) over the course of more than a century using a variety of bibliometric measures. It examines in detail the variable rate of knowledge production in the field, shifts in subject coverage, the dominance of particular publication genres at different times, prevailing modes of production, interactions with other disciplines, and, more generally, observes how the field has evolved. It shows that, despite a striking growth in the number of journals, papers, and contributing authors, a decrease was observed in the field's market-share of all social science and humanities research. Collaborative authorship is now the norm, a pattern seen across the social sciences. The idea of boundary crossing was also examined: in 2010, nearly 60% of authors who published in LIS also published in another discipline. This high degree of permeability in LIS was also demonstrated through reference and citation practices: LIS scholars now cite and receive citations from other fields more than from LIS itself. Two major structural shifts are revealed in the data: in 1960, LIS changed from a professional field focused on librarianship to an academic field focused on information and use; and in 1990, LIS began to receive a growing number of citations from outside the field, notably from Computer Science and Management, and saw a dramatic increase in the number of authors contributing to the literature of the field.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.5, S.997-1016
  8. Larivière, V.; Archambault, E.; Gingras, Y.: Long-term variations in the aging of scientific literature : from exponential growth to steady-state science (1900-2004) (2008) 0.01
    0.008691031 = product of:
      0.017382061 = sum of:
        0.017382061 = product of:
          0.034764122 = sum of:
            0.034764122 = weight(_text_:science in 1357) [ClassicSimilarity], result of:
              0.034764122 = score(doc=1357,freq=6.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.25204095 = fieldWeight in 1357, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1357)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Despite a very large number of studies on the aging and obsolescence of scientific literature, no study has yet measured, over a very long time period, the changes in the rates at which scientific literature becomes obsolete. This article studies the evolution of the aging phenomenon and, in particular, how the age of cited literature has changed over more than 100 years of scientific activity. It shows that the average and median ages of cited literature have undergone several changes over the period. Specifically, both World War I and World War II had the effect of significantly increasing the age of the cited literature. The major finding of this article is that contrary to a widely held belief, the age of cited material has risen continuously since the mid-1960s. In other words, during that period, researchers were relying on an increasingly old body of literature. Our data suggest that this phenomenon is a direct response to the steady-state dynamics of modern science that followed its exponential growth; however, we also have observed that online preprint archives such as arXiv have had the opposite effect in some subfields.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.2, S.288-296
  9. Kirchik, O.; Gingras, Y.; Larivière, V.: Changes in publication languages and citation practices and their effect on the scientific impact of Russian science (1993-2010) (2012) 0.01
    0.008691031 = product of:
      0.017382061 = sum of:
        0.017382061 = product of:
          0.034764122 = sum of:
            0.034764122 = weight(_text_:science in 284) [ClassicSimilarity], result of:
              0.034764122 = score(doc=284,freq=6.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.25204095 = fieldWeight in 284, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=284)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article analyzes the effects of publication language on the international scientific visibility of Russia using the Web of Science (WoS). Like other developing and transition countries, it is subject to a growing pressure to "internationalize" its scientific activities, which primarily means a shift to English as a language of scientific communication. But to what extent does the transition to English improve the impact of research? The case of Russia is of interest in this respect as the existence of many combinations of national journals and languages of publications (namely, Russian and English, including translated journals) provide a kind of natural I experiment to test the effects of language and publisher's country on the international visibility of research through citations as well as on the referencing practices of authors. Our analysis points to the conclusion that the production of original English-language papers in foreign journals is a more efficient strategy of internationalization than the mere translation of domestic journals. If the objective of a country is to maximize the international visibility of its scientific work, then the efforts should go into the promotion of publication in reputed English-language journals to profit from the added effect provided by the Matthew effect of these venues.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.7, S.1411-1419
  10. Larivière, V.; Gingras, Y.: ¬The impact factor's Matthew Effect : a natural experiment in bibliometrics (2010) 0.01
    0.008515436 = product of:
      0.017030872 = sum of:
        0.017030872 = product of:
          0.034061745 = sum of:
            0.034061745 = weight(_text_:science in 3338) [ClassicSimilarity], result of:
              0.034061745 = score(doc=3338,freq=4.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.24694869 = fieldWeight in 3338, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3338)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Since the publication of Robert K. Merton's theory of cumulative advantage in science (Matthew Effect), several empirical studies have tried to measure its presence at the level of papers, individual researchers, institutions, or countries. However, these studies seldom control for the intrinsic quality of papers or of researchers - better (however defined) papers or researchers could receive higher citation rates because they are indeed of better quality. Using an original method for controlling the intrinsic value of papers - identical duplicate papers published in different journals with different impact factors - this paper shows that the journal in which papers are published have a strong influence on their citation rates, as duplicate papers published in high-impact journals obtain, on average, twice as many citations as their identical counterparts published in journals with lower impact factors. The intrinsic value of a paper is thus not the only reason a given paper gets cited or not, there is a specific Matthew Effect attached to journals and this gives to papers published there an added value over and above their intrinsic quality.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.2, S.424-427
  11. Lachance, C.; Poirier, S.; Larivière, V.: ¬The kiss of death? : the effect of being cited in a review on subsequent citations (2014) 0.01
    0.008515436 = product of:
      0.017030872 = sum of:
        0.017030872 = product of:
          0.034061745 = sum of:
            0.034061745 = weight(_text_:science in 1310) [ClassicSimilarity], result of:
              0.034061745 = score(doc=1310,freq=4.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.24694869 = fieldWeight in 1310, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1310)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This work investigates recent claims that citation in a review article provokes a decline in a paper's later citation count; citations being given to the review article instead of the original paper. Using the Science Citation Index Expanded, we looked at the yearly percentages of lifetime citations of papers published in 1990 first cited in review articles in 1992 and 1995 in the field of biomedical research, and found that no significant change occurred after citation in a review article, regardless of the papers' citation activity or specialty. Additional comparison was done for papers from the field of clinical research, and this yielded no meaningful results to support the notion that review articles have any substantial effect on the citation count of the papers they review.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.7, S.1501-1505
  12. Hu, B.; Dong, X.; Zhang, C.; Bowman, T.D.; Ding, Y.; Milojevic, S.; Ni, C.; Yan, E.; Larivière, V.: ¬A lead-lag analysis of the topic evolution patterns for preprints and publications (2015) 0.01
    0.008515436 = product of:
      0.017030872 = sum of:
        0.017030872 = product of:
          0.034061745 = sum of:
            0.034061745 = weight(_text_:science in 2337) [ClassicSimilarity], result of:
              0.034061745 = score(doc=2337,freq=4.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.24694869 = fieldWeight in 2337, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2337)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study applied LDA (latent Dirichlet allocation) and regression analysis to conduct a lead-lag analysis to identify different topic evolution patterns between preprints and papers from arXiv and the Web of Science (WoS) in astrophysics over the last 20 years (1992-2011). Fifty topics in arXiv and WoS were generated using an LDA algorithm and then regression models were used to explain 4 types of topic growth patterns. Based on the slopes of the fitted equation curves, the paper redefines the topic trends and popularity. Results show that arXiv and WoS share similar topics in a given domain, but differ in evolution trends. Topics in WoS lose their popularity much earlier and their durations of popularity are shorter than those in arXiv. This work demonstrates that open access preprints have stronger growth tendency as compared to traditional printed publications.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.12, S.2643-2656
  13. Larivière, V.; Gingras, Y.: On the relationship between interdisciplinarity and scientific impact (2009) 0.01
    0.0070961965 = product of:
      0.014192393 = sum of:
        0.014192393 = product of:
          0.028384786 = sum of:
            0.028384786 = weight(_text_:science in 3316) [ClassicSimilarity], result of:
              0.028384786 = score(doc=3316,freq=4.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.20579056 = fieldWeight in 3316, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3316)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article analyzes the effect of interdisciplinarity on the scientific impact of individual articles. Using all the articles published in Web of Science in 2000, we define the degree of interdisciplinarity of a given article as the percentage of its cited references made to journals of other disciplines. We show that although for all disciplines combined there is no clear correlation between the level of interdisciplinarity of articles and their citation rates, there are nonetheless some disciplines in which a higher level of interdisciplinarity is related to a higher citation rates. For other disciplines, citations decline as interdisciplinarity grows. One characteristic is visible in all disciplines: Highly disciplinary and highly interdisciplinary articles have a low scientific impact. This suggests that there might be an optimum of interdisciplinarity beyond which the research is too dispersed to find its niche and under which it is too mainstream to have high impact. Finally, the relationship between interdisciplinarity and scientific impact is highly determined by the citation characteristics of the disciplines involved: Articles citing citation-intensive disciplines are more likely to be cited by those disciplines and, hence, obtain higher citation scores than would articles citing non-citation-intensive disciplines.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.1, S.126-131
  14. Larivière, V.; Lozano, G.A.; Gingras, Y.: Are elite journals declining? (2014) 0.01
    0.0070961965 = product of:
      0.014192393 = sum of:
        0.014192393 = product of:
          0.028384786 = sum of:
            0.028384786 = weight(_text_:science in 1228) [ClassicSimilarity], result of:
              0.028384786 = score(doc=1228,freq=4.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.20579056 = fieldWeight in 1228, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1228)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Previous research indicates that during the past 20 years, the highest-quality work has been published in an increasingly diverse and larger group of journals. In this article, we examine whether this diversification has also affected the handful of elite journals that are traditionally considered to be the best. We examine citation patterns during the past 40 years of seven long-standing traditionally elite journals and six journals that have been increasing in importance during the past 20 years. To be among the top 5% or 1% cited papers, papers now need about twice as many citations as they did 40 years ago. Since the late 1980s and early 1990s, elite journals have been publishing a decreasing proportion of these top-cited papers. This also applies to the two journals that are typically considered as the top venues and often used as bibliometric indicators of "excellence": Science and Nature. On the other hand, several new and established journals are publishing an increasing proportion of the most-cited papers. These changes bring new challenges and opportunities for all parties. Journals can enact policies to increase or maintain their relative position in the journal hierarchy. Researchers now have the option to publish in more diverse venues knowing that their work can still reach the same audiences. Finally, evaluators and administrators need to know that although there will always be a certain prestige associated with publishing in "elite" journals, journal hierarchies are in constant flux.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.4, S.649-655
  15. Haustein, S.; Peters, I.; Sugimoto, C.R.; Thelwall, M.; Larivière, V.: Tweeting biomedicine : an analysis of tweets and citations in the biomedical literature (2014) 0.01
    0.0070961965 = product of:
      0.014192393 = sum of:
        0.014192393 = product of:
          0.028384786 = sum of:
            0.028384786 = weight(_text_:science in 1229) [ClassicSimilarity], result of:
              0.028384786 = score(doc=1229,freq=4.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.20579056 = fieldWeight in 1229, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1229)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Data collected by social media platforms have been introduced as new sources for indicators to help measure the impact of scholarly research in ways that are complementary to traditional citation analysis. Data generated from social media activities can be used to reflect broad types of impact. This article aims to provide systematic evidence about how often Twitter is used to disseminate information about journal articles in the biomedical sciences. The analysis is based on 1.4 million documents covered by both PubMed and Web of Science and published between 2010 and 2012. The number of tweets containing links to these documents was analyzed and compared to citations to evaluate the degree to which certain journals, disciplines, and specialties were represented on Twitter and how far tweets correlate with citation impact. With less than 10% of PubMed articles mentioned on Twitter, its uptake is low in general but differs between journals and specialties. Correlations between tweets and citations are low, implying that impact metrics based on tweets are different from those based on citations. A framework using the coverage of articles and the correlation between Twitter mentions and citations is proposed to facilitate the evaluation of novel social-media-based metrics.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.4, S.656-669
  16. Larivière, V.; Sugimoto, C.R.; Macaluso, B.; Milojevi´c, S.; Cronin, B.; Thelwall, M.: arXiv E-prints and the journal of record : an analysis of roles and relationships (2014) 0.01
    0.0070961965 = product of:
      0.014192393 = sum of:
        0.014192393 = product of:
          0.028384786 = sum of:
            0.028384786 = weight(_text_:science in 1285) [ClassicSimilarity], result of:
              0.028384786 = score(doc=1285,freq=4.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.20579056 = fieldWeight in 1285, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1285)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Since its creation in 1991, arXiv has become central to the diffusion of research in a number of fields. Combining data from the entirety of arXiv and the Web of Science (WoS), this article investigates (a) the proportion of papers across all disciplines that are on arXiv and the proportion of arXiv papers that are in the WoS, (b) the elapsed time between arXiv submission and journal publication, and (c) the aging characteristics and scientific impact of arXiv e-prints and their published version. It shows that the proportion of WoS papers found on arXiv varies across the specialties of physics and mathematics, and that only a few specialties make extensive use of the repository. Elapsed time between arXiv submission and journal publication has shortened but remains longer in mathematics than in physics. In physics, mathematics, as well as in astronomy and astrophysics, arXiv versions are cited more promptly and decay faster than WoS papers. The arXiv versions of papers-both published and unpublished-have lower citation rates than published papers, although there is almost no difference in the impact of the arXiv versions of published and unpublished papers.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.6, S.1157-1169
  17. Mohammadi, E.; Thelwall, M.; Haustein, S.; Larivière, V.: Who reads research articles? : an altmetrics analysis of Mendeley user categories (2015) 0.01
    0.0070961965 = product of:
      0.014192393 = sum of:
        0.014192393 = product of:
          0.028384786 = sum of:
            0.028384786 = weight(_text_:science in 2162) [ClassicSimilarity], result of:
              0.028384786 = score(doc=2162,freq=4.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.20579056 = fieldWeight in 2162, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2162)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Little detailed information is known about who reads research articles and the contexts in which research articles are read. Using data about people who register in Mendeley as readers of articles, this article explores different types of users of Clinical Medicine, Engineering and Technology, Social Science, Physics, and Chemistry articles inside and outside academia. The majority of readers for all disciplines were PhD students, postgraduates, and postdocs but other types of academics were also represented. In addition, many Clinical Medicine articles were read by medical professionals. The highest correlations between citations and Mendeley readership counts were found for types of users who often authored academic articles, except for associate professors in some sub-disciplines. This suggests that Mendeley readership can reflect usage similar to traditional citation impact if the data are restricted to readers who are also authors without the delay of impact measured by citation counts. At the same time, Mendeley statistics can also reveal the hidden impact of some research articles, such as educational value for nonauthor users inside academia or the impact of research articles on practice for readers outside academia.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.9, S.1832-1846
  18. Mongeon, P.; Larivière, V.: Costly collaborations : the impact of scientific fraud on co-authors' careers (2016) 0.01
    0.0070961965 = product of:
      0.014192393 = sum of:
        0.014192393 = product of:
          0.028384786 = sum of:
            0.028384786 = weight(_text_:science in 2769) [ClassicSimilarity], result of:
              0.028384786 = score(doc=2769,freq=4.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.20579056 = fieldWeight in 2769, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2769)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Over the past few years, several major scientific fraud cases have shocked the scientific community. The number of retractions each year has also increased tremendously, especially in the biomedical field, and scientific misconduct accounts for more than half of those retractions. It is assumed that co-authors of retracted papers are affected by their colleagues' misconduct, and the aim of this study is to provide empirical evidence of the effect of retractions in biomedical research on co-authors' research careers. Using data from the Web of Science, we measured the productivity, impact, and collaboration of 1,123 co-authors of 293 retracted articles for a period of 5 years before and after the retraction. We found clear evidence that collaborators do suffer consequences of their colleagues' misconduct and that a retraction for fraud has higher consequences than a retraction for error. Our results also suggest that the extent of these consequences is closely linked with the ranking of co-authors on the retracted paper, being felt most strongly by first authors, followed by the last authors, with the impact is less important for middle authors.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.3, S.535-542
  19. Vincent-Lamarre, P.; Boivin, J.; Gargouri, Y.; Larivière, V.; Harnad, S.: Estimating open access mandate effectiveness : the MELIBEA score (2016) 0.01
    0.0070961965 = product of:
      0.014192393 = sum of:
        0.014192393 = product of:
          0.028384786 = sum of:
            0.028384786 = weight(_text_:science in 3162) [ClassicSimilarity], result of:
              0.028384786 = score(doc=3162,freq=4.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.20579056 = fieldWeight in 3162, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3162)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    MELIBEA is a directory of institutional open-access policies for research output that uses a composite formula with eight weighted conditions to estimate the "strength" of open access (OA) mandates (registered in ROARMAP). We analyzed total Web of Science-(WoS)-indexed publication output in years 2011-2013 for 67 institutions in which OA was mandated to estimate the mandates' effectiveness: How well did the MELIBEA score and its individual conditions predict what percentage of the WoS-indexed articles is actually deposited in each institution's OA repository, and when? We found a small but significant positive correlation (0.18) between the MELIBEA "strength" score and deposit percentage. For three of the eight MELIBEA conditions (deposit timing, internal use, and opt-outs), one value of each was strongly associated with deposit percentage or latency ([a] immediate deposit required; [b] deposit required for performance evaluation; [c] unconditional opt-out allowed for the OA requirement but no opt-out for deposit requirement). When we updated the initial values and weights of the MELIBEA formula to reflect the empirical association we had found, the score's predictive power for mandate effectiveness doubled (0.36). There are not yet enough OA mandates to test further mandate conditions that might contribute to mandate effectiveness, but the present findings already suggest that it would be productive for existing and future mandates to adopt the three identified conditions so as to maximize their effectiveness, and thereby the growth of OA.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.11, S.2815-2828
  20. Chen, L.; Ding, J.; Larivière, V.: Measuring the citation context of national self-references : how a web journal club is used (2022) 0.01
    0.0070961965 = product of:
      0.014192393 = sum of:
        0.014192393 = product of:
          0.028384786 = sum of:
            0.028384786 = weight(_text_:science in 545) [ClassicSimilarity], result of:
              0.028384786 = score(doc=545,freq=4.0), product of:
                0.13793045 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052363027 = queryNorm
                0.20579056 = fieldWeight in 545, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=545)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The emphasis on research evaluation has brought scrutiny to the role of self-citations in the scholarly communication process. While author self-citations have been studied at length, little is known on national-level self-references (SRs). This paper analyses the citation context of national SRs, using the full-text of 184,859 papers published in PLOS journals. It investigates the differences between national SRs and nonself-references (NSRs) in terms of their in-text mention, presence in enumerations, and location features. For all countries, national SRs exhibit a higher level of engagement than NSRs. NSRs are more often found in enumerative citances than SRs, which suggests that researchers pay more attention to domestic than foreign studies. There are more mentions of national research in the methods section, which provides evidence that methodologies developed in a nation are more likely to be used by other researchers from the same nation. Publications from the United States are cited at a higher rate in each of the sections, indicating that the country still maintains a dominant position in science. On the whole, this paper contributes to a better understanding of the role of national SRs in the scholarly communication system, and how it varies across countries and over time.
    Source
    Journal of the Association for Information Science and Technology. 73(2022) no.5, S.671-686