Search (175 results, page 1 of 9)

  • × theme_ss:"Data Mining"
  1. Medien-Informationsmanagement : Archivarische, dokumentarische, betriebswirtschaftliche, rechtliche und Berufsbild-Aspekte ; [Frühjahrstagung der Fachgruppe 7 im Jahr 2000 in Weimar und Folgetagung 2001 in Köln] (2003) 0.05
    0.0497644 = product of:
      0.22393979 = sum of:
        0.012201829 = weight(_text_:data in 1833) [ClassicSimilarity], result of:
          0.012201829 = score(doc=1833,freq=2.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.10480815 = fieldWeight in 1833, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1833)
        0.21173796 = sum of:
          0.19677293 = weight(_text_:congresses in 1833) [ClassicSimilarity], result of:
            0.19677293 = score(doc=1833,freq=12.0), product of:
              0.2987186 = queryWeight, product of:
                8.113368 = idf(docFreq=35, maxDocs=44218)
                0.036818076 = queryNorm
              0.6587234 = fieldWeight in 1833, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                8.113368 = idf(docFreq=35, maxDocs=44218)
                0.0234375 = fieldNorm(doc=1833)
          0.014965023 = weight(_text_:22 in 1833) [ClassicSimilarity], result of:
            0.014965023 = score(doc=1833,freq=2.0), product of:
              0.12893063 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.036818076 = queryNorm
              0.116070345 = fieldWeight in 1833, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0234375 = fieldNorm(doc=1833)
      0.22222222 = coord(2/9)
    
    Date
    11. 5.2008 19:49:22
    LCSH
    Mass media / Archival resources / Congresses
    Audio / visual archives / Congresses
    Information technology / Management / Congresses
    Subject
    Mass media / Archival resources / Congresses
    Audio / visual archives / Congresses
    Information technology / Management / Congresses
    Theme
    Data Mining
  2. Survey of text mining : clustering, classification, and retrieval (2004) 0.05
    0.048396103 = product of:
      0.21778247 = sum of:
        0.053805016 = weight(_text_:data in 804) [ClassicSimilarity], result of:
          0.053805016 = score(doc=804,freq=14.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.46216056 = fieldWeight in 804, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=804)
        0.16397744 = product of:
          0.3279549 = sum of:
            0.3279549 = weight(_text_:congresses in 804) [ClassicSimilarity], result of:
              0.3279549 = score(doc=804,freq=12.0), product of:
                0.2987186 = queryWeight, product of:
                  8.113368 = idf(docFreq=35, maxDocs=44218)
                  0.036818076 = queryNorm
                1.0978724 = fieldWeight in 804, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  8.113368 = idf(docFreq=35, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=804)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Classification
    ST 270 Informatik / Monographien / Software und -entwicklung / Datenbanken, Datenbanksysteme, Data base management, Informationssysteme
    LCSH
    Data mining ; Information retrieval
    Data mining / Congresses (GBV)
    Cluster analysis / Congresses (GBV)
    Discriminant analysis / Congresses (GBV)
    RVK
    ST 270 Informatik / Monographien / Software und -entwicklung / Datenbanken, Datenbanksysteme, Data base management, Informationssysteme
    Subject
    Data mining ; Information retrieval
    Data mining / Congresses (GBV)
    Cluster analysis / Congresses (GBV)
    Discriminant analysis / Congresses (GBV)
    Theme
    Data Mining
  3. Chardonnens, A.; Hengchen, S.: Text mining for cultural heritage institutions : a 5-step method for cultural heritage institutions (2017) 0.03
    0.032949634 = product of:
      0.14827335 = sum of:
        0.032538213 = weight(_text_:data in 646) [ClassicSimilarity], result of:
          0.032538213 = score(doc=646,freq=2.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.2794884 = fieldWeight in 646, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=646)
        0.115735136 = weight(_text_:germany in 646) [ClassicSimilarity], result of:
          0.115735136 = score(doc=646,freq=2.0), product of:
            0.21956629 = queryWeight, product of:
              5.963546 = idf(docFreq=308, maxDocs=44218)
              0.036818076 = queryNorm
            0.52710795 = fieldWeight in 646, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.963546 = idf(docFreq=308, maxDocs=44218)
              0.0625 = fieldNorm(doc=646)
      0.22222222 = coord(2/9)
    
    Source
    Everything changes, everything stays the same? - Understanding information spaces : Proceedings of the 15th International Symposium of Information Science (ISI 2017), Berlin/Germany, 13th - 15th March 2017. Eds.: M. Gäde, V. Trkulja u. V. Petras
    Theme
    Data Mining
  4. Search tools (1997) 0.03
    0.031451605 = product of:
      0.14153223 = sum of:
        0.040263984 = weight(_text_:data in 3834) [ClassicSimilarity], result of:
          0.040263984 = score(doc=3834,freq=4.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.34584928 = fieldWeight in 3834, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3834)
        0.10126825 = weight(_text_:germany in 3834) [ClassicSimilarity], result of:
          0.10126825 = score(doc=3834,freq=2.0), product of:
            0.21956629 = queryWeight, product of:
              5.963546 = idf(docFreq=308, maxDocs=44218)
              0.036818076 = queryNorm
            0.46121946 = fieldWeight in 3834, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.963546 = idf(docFreq=308, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3834)
      0.22222222 = coord(2/9)
    
    Abstract
    Offers brief accounts of Internet search tools. Covers the Lycos revamp; the new navigation service produced jointly by Excite and Netscape, delivering a language specific, locally relevant Web guide for Japan, Germany, France, the UK and Australia; InfoWatcher, a combination offline browser, search engine and push product from Carvelle Inc., USA; Alexa by Alexa Internet and WBI from IBM which are free and provide users with information on how others have used the Web sites which they are visiting; and Concept Explorer from Knowledge Discovery Systems, Inc., California which performs data mining from the Web, Usenet groups, MEDLINE and the US Patent and Trademark Office patent abstracts
    Theme
    Data Mining
  5. Information visualization in data mining and knowledge discovery (2002) 0.03
    0.031072974 = product of:
      0.09321892 = sum of:
        0.0307106 = weight(_text_:readable in 1789) [ClassicSimilarity], result of:
          0.0307106 = score(doc=1789,freq=2.0), product of:
            0.2262076 = queryWeight, product of:
              6.1439276 = idf(docFreq=257, maxDocs=44218)
              0.036818076 = queryNorm
            0.1357629 = fieldWeight in 1789, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.1439276 = idf(docFreq=257, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.057519976 = weight(_text_:data in 1789) [ClassicSimilarity], result of:
          0.057519976 = score(doc=1789,freq=100.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.49407038 = fieldWeight in 1789, product of:
              10.0 = tf(freq=100.0), with freq of:
                100.0 = termFreq=100.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.004988341 = product of:
          0.009976682 = sum of:
            0.009976682 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
              0.009976682 = score(doc=1789,freq=2.0), product of:
                0.12893063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036818076 = queryNorm
                0.07738023 = fieldWeight in 1789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1789)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    Rez. in: JASIST 54(2003) no.9, S.905-906 (C.A. Badurek): "Visual approaches for knowledge discovery in very large databases are a prime research need for information scientists focused an extracting meaningful information from the ever growing stores of data from a variety of domains, including business, the geosciences, and satellite and medical imagery. This work presents a summary of research efforts in the fields of data mining, knowledge discovery, and data visualization with the goal of aiding the integration of research approaches and techniques from these major fields. The editors, leading computer scientists from academia and industry, present a collection of 32 papers from contributors who are incorporating visualization and data mining techniques through academic research as well application development in industry and government agencies. Information Visualization focuses upon techniques to enhance the natural abilities of humans to visually understand data, in particular, large-scale data sets. It is primarily concerned with developing interactive graphical representations to enable users to more intuitively make sense of multidimensional data as part of the data exploration process. It includes research from computer science, psychology, human-computer interaction, statistics, and information science. Knowledge Discovery in Databases (KDD) most often refers to the process of mining databases for previously unknown patterns and trends in data. Data mining refers to the particular computational methods or algorithms used in this process. The data mining research field is most related to computational advances in database theory, artificial intelligence and machine learning. This work compiles research summaries from these main research areas in order to provide "a reference work containing the collection of thoughts and ideas of noted researchers from the fields of data mining and data visualization" (p. 8). It addresses these areas in three main sections: the first an data visualization, the second an KDD and model visualization, and the last an using visualization in the knowledge discovery process. The seven chapters of Part One focus upon methodologies and successful techniques from the field of Data Visualization. Hoffman and Grinstein (Chapter 2) give a particularly good overview of the field of data visualization and its potential application to data mining. An introduction to the terminology of data visualization, relation to perceptual and cognitive science, and discussion of the major visualization display techniques are presented. Discussion and illustration explain the usefulness and proper context of such data visualization techniques as scatter plots, 2D and 3D isosurfaces, glyphs, parallel coordinates, and radial coordinate visualizations. Remaining chapters present the need for standardization of visualization methods, discussion of user requirements in the development of tools, and examples of using information visualization in addressing research problems.
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
    With contributors almost exclusively from the computer science field, the intended audience of this work is heavily slanted towards a computer science perspective. However, it is highly readable and provides introductory material that would be useful to information scientists from a variety of domains. Yet, much interesting work in information visualization from other fields could have been included giving the work more of an interdisciplinary perspective to complement their goals of integrating work in this area. Unfortunately, many of the application chapters are these, shallow, and lack complementary illustrations of visualization techniques or user interfaces used. However, they do provide insight into the many applications being developed in this rapidly expanding field. The authors have successfully put together a highly useful reference text for the data mining and information visualization communities. Those interested in a good introduction and overview of complementary research areas in these fields will be satisfied with this collection of papers. The focus upon integrating data visualization with data mining complements texts in each of these fields, such as Advances in Knowledge Discovery and Data Mining (Fayyad et al., MIT Press) and Readings in Information Visualization: Using Vision to Think (Card et. al., Morgan Kauffman). This unique work is a good starting point for future interaction between researchers in the fields of data visualization and data mining and makes a good accompaniment for a course focused an integrating these areas or to the main reference texts in these fields."
    LCSH
    Data mining
    RSWK
    Visualisierung / Computergraphik / Data Mining
    Data Mining / Visualisierung / Aufsatzsammlung (BVB)
    Series
    Morgan Kaufmann series in data management systems
    Subject
    Visualisierung / Computergraphik / Data Mining
    Data Mining / Visualisierung / Aufsatzsammlung (BVB)
    Data mining
    Theme
    Data Mining
  6. Hereth, J.; Stumme, G.; Wille, R.; Wille, U.: Conceptual knowledge discovery and data analysis (2000) 0.03
    0.028030995 = product of:
      0.12613948 = sum of:
        0.053805016 = weight(_text_:data in 5083) [ClassicSimilarity], result of:
          0.053805016 = score(doc=5083,freq=14.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.46216056 = fieldWeight in 5083, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5083)
        0.07233446 = weight(_text_:germany in 5083) [ClassicSimilarity], result of:
          0.07233446 = score(doc=5083,freq=2.0), product of:
            0.21956629 = queryWeight, product of:
              5.963546 = idf(docFreq=308, maxDocs=44218)
              0.036818076 = queryNorm
            0.32944247 = fieldWeight in 5083, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.963546 = idf(docFreq=308, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5083)
      0.22222222 = coord(2/9)
    
    Abstract
    In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin
    Source
    Conceptual structures: logical, linguistic, and computational issues. 8th International Conference on Conceptual Structures, ICCS 2000, Darmstadt, Germany, August 14-18, 2000. Ed.: B. Ganter et al
    Theme
    Data Mining
  7. Lusti, M.: Data Warehousing and Data Mining : Eine Einführung in entscheidungsunterstützende Systeme (1999) 0.02
    0.023564752 = product of:
      0.10604139 = sum of:
        0.086088024 = weight(_text_:data in 4261) [ClassicSimilarity], result of:
          0.086088024 = score(doc=4261,freq=14.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.7394569 = fieldWeight in 4261, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=4261)
        0.019953365 = product of:
          0.03990673 = sum of:
            0.03990673 = weight(_text_:22 in 4261) [ClassicSimilarity], result of:
              0.03990673 = score(doc=4261,freq=2.0), product of:
                0.12893063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036818076 = queryNorm
                0.30952093 = fieldWeight in 4261, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4261)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Date
    17. 7.2002 19:22:06
    RSWK
    Data-warehouse-Konzept / Lehrbuch
    Data mining / Lehrbuch
    Subject
    Data-warehouse-Konzept / Lehrbuch
    Data mining / Lehrbuch
    Theme
    Data Mining
  8. KDD : techniques and applications (1998) 0.02
    0.021989783 = product of:
      0.09895402 = sum of:
        0.069023974 = weight(_text_:data in 6783) [ClassicSimilarity], result of:
          0.069023974 = score(doc=6783,freq=4.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.5928845 = fieldWeight in 6783, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.09375 = fieldNorm(doc=6783)
        0.029930046 = product of:
          0.05986009 = sum of:
            0.05986009 = weight(_text_:22 in 6783) [ClassicSimilarity], result of:
              0.05986009 = score(doc=6783,freq=2.0), product of:
                0.12893063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036818076 = queryNorm
                0.46428138 = fieldWeight in 6783, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6783)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Footnote
    A special issue of selected papers from the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'97), held Singapore, 22-23 Feb 1997
    Theme
    Data Mining
  9. Chowdhury, G.G.: Template mining for information extraction from digital documents (1999) 0.02
    0.020413391 = product of:
      0.09186026 = sum of:
        0.05694187 = weight(_text_:data in 4577) [ClassicSimilarity], result of:
          0.05694187 = score(doc=4577,freq=2.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.48910472 = fieldWeight in 4577, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.109375 = fieldNorm(doc=4577)
        0.034918386 = product of:
          0.06983677 = sum of:
            0.06983677 = weight(_text_:22 in 4577) [ClassicSimilarity], result of:
              0.06983677 = score(doc=4577,freq=2.0), product of:
                0.12893063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036818076 = queryNorm
                0.5416616 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4577)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Date
    2. 4.2000 18:01:22
    Theme
    Data Mining
  10. Organisciak, P.; Schmidt, B.M.; Downie, J.S.: Giving shape to large digital libraries through exploratory data analysis (2022) 0.02
    0.01906629 = product of:
      0.08579831 = sum of:
        0.036990993 = weight(_text_:bibliographic in 473) [ClassicSimilarity], result of:
          0.036990993 = score(doc=473,freq=2.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.2580748 = fieldWeight in 473, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.046875 = fieldNorm(doc=473)
        0.048807316 = weight(_text_:data in 473) [ClassicSimilarity], result of:
          0.048807316 = score(doc=473,freq=8.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.4192326 = fieldWeight in 473, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=473)
      0.22222222 = coord(2/9)
    
    Abstract
    The emergence of large multi-institutional digital libraries has opened the door to aggregate-level examinations of the published word. Such large-scale analysis offers a new way to pursue traditional problems in the humanities and social sciences, using digital methods to ask routine questions of large corpora. However, inquiry into multiple centuries of books is constrained by the burdens of scale, where statistical inference is technically complex and limited by hurdles to access and flexibility. This work examines the role that exploratory data analysis and visualization tools may play in understanding large bibliographic datasets. We present one such tool, HathiTrust+Bookworm, which allows multifaceted exploration of the multimillion work HathiTrust Digital Library, and center it in the broader space of scholarly tools for exploratory data analysis.
    Theme
    Data Mining
  11. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.02
    0.018426256 = product of:
      0.08291815 = sum of:
        0.070447296 = weight(_text_:data in 1605) [ClassicSimilarity], result of:
          0.070447296 = score(doc=1605,freq=24.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.60511017 = fieldWeight in 1605, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1605)
        0.012470853 = product of:
          0.024941705 = sum of:
            0.024941705 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
              0.024941705 = score(doc=1605,freq=2.0), product of:
                0.12893063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036818076 = queryNorm
                0.19345059 = fieldWeight in 1605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Numerous studies have explored the possibility of uncovering information from web search queries but few have examined the factors that affect web query data sources. We conducted a study that investigated this issue by comparing Google Trends and Baidu Index. Data from these two services are based on queries entered by users into Google and Baidu, two of the largest search engines in the world. We first compared the features and functions of the two services based on documents and extensive testing. We then carried out an empirical study that collected query volume data from the two sources. We found that data from both sources could be used to predict the quality of Chinese universities and companies. Despite the differences between the two services in terms of technology, such as differing methods of language processing, the search volume data from the two were highly correlated and combining the two data sources did not improve the predictive power of the data. However, there was a major difference between the two in terms of data availability. Baidu Index was able to provide more search volume data than Google Trends did. Our analysis showed that the disadvantage of Google Trends in this regard was due to Google's smaller user base in China. The implication of this finding goes beyond China. Google's user bases in many countries are smaller than that in China, so the search volume data related to those countries could result in the same issue as that related to China.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
    Theme
    Data Mining
  12. Fonseca, F.; Marcinkowski, M.; Davis, C.: Cyber-human systems of thought and understanding (2019) 0.02
    0.018426256 = product of:
      0.08291815 = sum of:
        0.070447296 = weight(_text_:data in 5011) [ClassicSimilarity], result of:
          0.070447296 = score(doc=5011,freq=24.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.60511017 = fieldWeight in 5011, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5011)
        0.012470853 = product of:
          0.024941705 = sum of:
            0.024941705 = weight(_text_:22 in 5011) [ClassicSimilarity], result of:
              0.024941705 = score(doc=5011,freq=2.0), product of:
                0.12893063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036818076 = queryNorm
                0.19345059 = fieldWeight in 5011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    The present challenge faced by scientists working with Big Data comes in the overwhelming volume and level of detail provided by current data sets. Exceeding traditional empirical approaches, Big Data opens a new perspective on scientific work in which data comes to play a role in the development of the scientific problematic to be developed. Addressing this reconfiguration of our relationship with data through readings of Wittgenstein, Macherey, and Popper, we propose a picture of science that encourages scientists to engage with the data in a direct way, using the data itself as an instrument for scientific investigation. Using GIS as a theme, we develop the concept of cyber-human systems of thought and understanding to bridge the divide between representative (theoretical) thinking and (non-theoretical) data-driven science. At the foundation of these systems, we invoke the concept of the "semantic pixel" to establish a logical and virtual space linking data and the work of scientists. It is with this discussion of the relationship between analysts in their pursuit of knowledge and the rise of Big Data that this present discussion of the philosophical foundations of Big Data addresses the central questions raised by social informatics research.
    Date
    7. 3.2019 16:32:22
    Theme
    Data Mining
  13. Matson, L.D.; Bonski, D.J.: Do digital libraries need librarians? (1997) 0.02
    0.016958045 = product of:
      0.0763112 = sum of:
        0.05635784 = weight(_text_:data in 1737) [ClassicSimilarity], result of:
          0.05635784 = score(doc=1737,freq=6.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.48408815 = fieldWeight in 1737, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=1737)
        0.019953365 = product of:
          0.03990673 = sum of:
            0.03990673 = weight(_text_:22 in 1737) [ClassicSimilarity], result of:
              0.03990673 = score(doc=1737,freq=2.0), product of:
                0.12893063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036818076 = queryNorm
                0.30952093 = fieldWeight in 1737, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1737)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Defines digital libraries and discusses the effects of new technology on librarians. Examines the different viewpoints of librarians and information technologists on digital libraries. Describes the development of a digital library at the National Drug Intelligence Center, USA, which was carried out in collaboration with information technology experts. The system is based on Web enabled search technology to find information, data visualization and data mining to visualize it and use of SGML as an information standard to store it
    Date
    22.11.1998 18:57:22
    Theme
    Data Mining
  14. Lackes, R.; Tillmanns, C.: Data Mining für die Unternehmenspraxis : Entscheidungshilfen und Fallstudien mit führenden Softwarelösungen (2006) 0.02
    0.016609231 = product of:
      0.074741535 = sum of:
        0.059776515 = weight(_text_:data in 1383) [ClassicSimilarity], result of:
          0.059776515 = score(doc=1383,freq=12.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.513453 = fieldWeight in 1383, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1383)
        0.014965023 = product of:
          0.029930046 = sum of:
            0.029930046 = weight(_text_:22 in 1383) [ClassicSimilarity], result of:
              0.029930046 = score(doc=1383,freq=2.0), product of:
                0.12893063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036818076 = queryNorm
                0.23214069 = fieldWeight in 1383, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1383)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Das Buch richtet sich an Praktiker in Unternehmen, die sich mit der Analyse von großen Datenbeständen beschäftigen. Nach einem kurzen Theorieteil werden vier Fallstudien aus dem Customer Relationship Management eines Versandhändlers bearbeitet. Dabei wurden acht führende Softwarelösungen verwendet: der Intelligent Miner von IBM, der Enterprise Miner von SAS, Clementine von SPSS, Knowledge Studio von Angoss, der Delta Miner von Bissantz, der Business Miner von Business Object und die Data Engine von MIT. Im Rahmen der Fallstudien werden die Stärken und Schwächen der einzelnen Lösungen deutlich, und die methodisch-korrekte Vorgehensweise beim Data Mining wird aufgezeigt. Beides liefert wertvolle Entscheidungshilfen für die Auswahl von Standardsoftware zum Data Mining und für die praktische Datenanalyse.
    Content
    Modelle, Methoden und Werkzeuge: Ziele und Aufbau der Untersuchung.- Grundlagen.- Planung und Entscheidung mit Data-Mining-Unterstützung.- Methoden.- Funktionalität und Handling der Softwarelösungen. Fallstudien: Ausgangssituation und Datenbestand im Versandhandel.- Kundensegmentierung.- Erklärung regionaler Marketingerfolge zur Neukundengewinnung.Prognose des Customer Lifetime Values.- Selektion von Kunden für eine Direktmarketingaktion.- Welche Softwarelösung für welche Entscheidung?- Fazit und Marktentwicklungen.
    Date
    22. 3.2008 14:46:06
    Theme
    Data Mining
  15. Amir, A.; Feldman, R.; Kashi, R.: ¬A new and versatile method for association generation (1997) 0.01
    0.0146598555 = product of:
      0.06596935 = sum of:
        0.04601598 = weight(_text_:data in 1270) [ClassicSimilarity], result of:
          0.04601598 = score(doc=1270,freq=4.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.3952563 = fieldWeight in 1270, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=1270)
        0.019953365 = product of:
          0.03990673 = sum of:
            0.03990673 = weight(_text_:22 in 1270) [ClassicSimilarity], result of:
              0.03990673 = score(doc=1270,freq=2.0), product of:
                0.12893063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036818076 = queryNorm
                0.30952093 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1270)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Current algorithms for finding associations among the attributes describing data in a database have a number of shortcomings. Presents a novel method for association generation, that answers all desiderata. The method is different from all existing algorithms and especially suitable to textual databases with binary attributes. Uses subword trees for quick indexing into the required database statistics. Tests the algorithm on the Reuters-22173 database with satisfactory results
    Source
    Information systems. 22(1997) nos.5/6, S.333-347
    Theme
    Data Mining
  16. Keim, D.A.: Data Mining mit bloßem Auge (2002) 0.01
    0.012126276 = product of:
      0.109136485 = sum of:
        0.109136485 = weight(_text_:data in 1086) [ClassicSimilarity], result of:
          0.109136485 = score(doc=1086,freq=10.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.93743265 = fieldWeight in 1086, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.09375 = fieldNorm(doc=1086)
      0.11111111 = coord(1/9)
    
    Abstract
    Visualisierungen, die möglichst instruktive grafische Darstellung von Daten, ist wesentlicher Bestandteil des Data Mining
    Footnote
    Teil eines Heftthemas 'Data Mining'
    Series
    Data Mining
    Theme
    Data Mining
  17. Hallonsten, O.; Holmberg, D.: Analyzing structural stratification in the Swedish higher education system : data contextualization with policy-history analysis (2013) 0.01
    0.011809694 = product of:
      0.05314362 = sum of:
        0.040672768 = weight(_text_:data in 668) [ClassicSimilarity], result of:
          0.040672768 = score(doc=668,freq=8.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.34936053 = fieldWeight in 668, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=668)
        0.012470853 = product of:
          0.024941705 = sum of:
            0.024941705 = weight(_text_:22 in 668) [ClassicSimilarity], result of:
              0.024941705 = score(doc=668,freq=2.0), product of:
                0.12893063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036818076 = queryNorm
                0.19345059 = fieldWeight in 668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    20th century massification of higher education and research in academia is said to have produced structurally stratified higher education systems in many countries. Most manifestly, the research mission of universities appears to be divisive. Authors have claimed that the Swedish system, while formally unified, has developed into a binary state, and statistics seem to support this conclusion. This article makes use of a comprehensive statistical data source on Swedish higher education institutions to illustrate stratification, and uses literature on Swedish research policy history to contextualize the statistics. Highlighting the opportunities as well as constraints of the data, the article argues that there is great merit in combining statistics with a qualitative analysis when studying the structural characteristics of national higher education systems. Not least the article shows that it is an over-simplification to describe the Swedish system as binary; the stratification is more complex. On basis of the analysis, the article also argues that while global trends certainly influence national developments, higher education systems have country-specific features that may enrich the understanding of how systems evolve and therefore should be analyzed as part of a broader study of the increasingly globalized academic system.
    Date
    22. 3.2013 19:43:01
    Theme
    Data Mining
  18. Chakrabarti, S.: Mining the Web : discovering knowledge from hypertext data (2003) 0.01
    0.011742129 = product of:
      0.05283958 = sum of:
        0.024660662 = weight(_text_:bibliographic in 2222) [ClassicSimilarity], result of:
          0.024660662 = score(doc=2222,freq=2.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.17204987 = fieldWeight in 2222, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03125 = fieldNorm(doc=2222)
        0.02817892 = weight(_text_:data in 2222) [ClassicSimilarity], result of:
          0.02817892 = score(doc=2222,freq=6.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.24204408 = fieldWeight in 2222, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=2222)
      0.22222222 = coord(2/9)
    
    Footnote
    Rez. in: JASIST 55(2004) no.3, S.275-276 (C. Chen): "This is a book about finding significant statistical patterns on the Web - in particular, patterns that are associated with hypertext documents, topics, hyperlinks, and queries. The term pattern in this book refers to dependencies among such items. On the one hand, the Web contains useful information an just about every topic under the sun. On the other hand, just like searching for a needle in a haystack, one would need powerful tools to locate useful information an the vast land of the Web. Soumen Chakrabarti's book focuses an a wide range of techniques for machine learning and data mining an the Web. The goal of the book is to provide both the technical Background and tools and tricks of the trade of Web content mining. Much of the technical content reflects the state of the art between 1995 and 2002. The targeted audience is researchers and innovative developers in this area, as well as newcomers who intend to enter this area. The book begins with an introduction chapter. The introduction chapter explains fundamental concepts such as crawling and indexing as well as clustering and classification. The remaining eight chapters are organized into three parts: i) infrastructure, ii) learning and iii) applications.
    Part I, Infrastructure, has two chapters: Chapter 2 on crawling the Web and Chapter 3 an Web search and information retrieval. The second part of the book, containing chapters 4, 5, and 6, is the centerpiece. This part specifically focuses an machine learning in the context of hypertext. Part III is a collection of applications that utilize the techniques described in earlier chapters. Chapter 7 is an social network analysis. Chapter 8 is an resource discovery. Chapter 9 is an the future of Web mining. Overall, this is a valuable reference book for researchers and developers in the field of Web mining. It should be particularly useful for those who would like to design and probably code their own Computer programs out of the equations and pseudocodes an most of the pages. For a student, the most valuable feature of the book is perhaps the formal and consistent treatments of concepts across the board. For what is behind and beyond the technical details, one has to either dig deeper into the bibliographic notes at the end of each chapter, or resort to more in-depth analysis of relevant subjects in the literature. lf you are looking for successful stories about Web mining or hard-way-learned lessons of failures, this is not the book."
    Theme
    Data Mining
  19. Fayyad, U.M.: Data mining and knowledge dicovery : making sense out of data (1996) 0.01
    0.011069724 = product of:
      0.09962752 = sum of:
        0.09962752 = weight(_text_:data in 7007) [ClassicSimilarity], result of:
          0.09962752 = score(doc=7007,freq=12.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.855755 = fieldWeight in 7007, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.078125 = fieldNorm(doc=7007)
      0.11111111 = coord(1/9)
    
    Abstract
    Defines knowledge discovery and data mining (KDD) as the overall process of extracting high level knowledge from low level data. Outlines the KDD process. Explains how KDD is related to the fields of: statistics, pattern recognition, machine learning, artificial intelligence, databases and data warehouses
    Theme
    Data Mining
  20. Saz, J.T.: Perspectivas en recuperacion y explotacion de informacion electronica : el 'data mining' (1997) 0.01
    0.011069724 = product of:
      0.09962752 = sum of:
        0.09962752 = weight(_text_:data in 3723) [ClassicSimilarity], result of:
          0.09962752 = score(doc=3723,freq=12.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.855755 = fieldWeight in 3723, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.078125 = fieldNorm(doc=3723)
      0.11111111 = coord(1/9)
    
    Abstract
    Presents the concept and the techniques identified by the term data mining. Explains the principles and phases of developing a data mining process, and the main types of data mining tools
    Footnote
    Übers. des Titels: Perspectives on the retrieval and exploitation of electronic information: data mining
    Theme
    Data Mining

Years

Languages

  • e 134
  • d 40
  • sp 1
  • More… Less…

Types

  • a 141
  • m 22
  • s 20
  • el 17
  • x 2
  • p 1
  • More… Less…