Search (26 results, page 1 of 2)

  • × theme_ss:"Universale Facettenklassifikationen"
  1. Mills, J.; Broughton, V.: Bliss Bibliographic Classification : Introduction and auxiliary schedules (1992) 0.01
    0.014499106 = product of:
      0.13049196 = sum of:
        0.13049196 = weight(_text_:bibliographic in 821) [ClassicSimilarity], result of:
          0.13049196 = score(doc=821,freq=14.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.9104023 = fieldWeight in 821, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0625 = fieldNorm(doc=821)
      0.11111111 = coord(1/9)
    
    LCSH
    Classification, Bibliographic
    Bliss Bibliographic classification
    PRECIS
    Documents / Subject classification schemes: Bliss, Henry Evelyn / Bliss bibliographic classification / Texts
    Subject
    Classification, Bibliographic
    Bliss Bibliographic classification
    Documents / Subject classification schemes: Bliss, Henry Evelyn / Bliss bibliographic classification / Texts
  2. Broughton, V.: Finding Bliss on the Web : some problems of representing faceted terminologies in digital environments 0.01
    0.013643255 = product of:
      0.06139465 = sum of:
        0.036990993 = weight(_text_:bibliographic in 3532) [ClassicSimilarity], result of:
          0.036990993 = score(doc=3532,freq=2.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.2580748 = fieldWeight in 3532, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.046875 = fieldNorm(doc=3532)
        0.024403658 = weight(_text_:data in 3532) [ClassicSimilarity], result of:
          0.024403658 = score(doc=3532,freq=2.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.2096163 = fieldWeight in 3532, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3532)
      0.22222222 = coord(2/9)
    
    Abstract
    The Bliss Bibliographic Classification is the only example of a fully faceted general classification scheme in the Western world. Although it is the object of much interest as a model for other tools it suffers from the lack of a web presence, and remedying this is an immediate objective for its editors. Understanding how this might be done presents some challenges, as the scheme is semantically very rich and complex in the range and nature of the relationships it contains. The automatic management of these is already in place using local software, but exporting this to a common data format needs careful thought and planning. Various encoding schemes, both for traditional classifications, and for digital materials, represent variously: the concepts; their functional roles; and the relationships between them. Integrating these aspects in a coherent and interchangeable manner appears to be achievable, but the most appropriate format is as yet unclear.
  3. Broughton, V.: Language related problems in the construction of faceted terminologies and their automatic management (2008) 0.01
    0.011369381 = product of:
      0.051162213 = sum of:
        0.03082583 = weight(_text_:bibliographic in 2497) [ClassicSimilarity], result of:
          0.03082583 = score(doc=2497,freq=2.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.21506234 = fieldWeight in 2497, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2497)
        0.020336384 = weight(_text_:data in 2497) [ClassicSimilarity], result of:
          0.020336384 = score(doc=2497,freq=2.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.17468026 = fieldWeight in 2497, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2497)
      0.22222222 = coord(2/9)
    
    Content
    The paper describes current work on the generation of a thesaurus format from the schedules of the Bliss Bibliographic Classification 2nd edition (BC2). The practical problems that occur in moving from a concept based approach to a terminological approach cluster around issues of vocabulary control that are not fully addressed in a systematic structure. These difficulties can be exacerbated within domains in the humanities because large numbers of culture specific terms may need to be accommodated in any thesaurus. The ways in which these problems can be resolved within the context of a semi-automated approach to the thesaurus generation have consequences for the management of classification data in the source vocabulary. The way in which the vocabulary is marked up for the purpose of machine manipulation is described, and some of the implications for editorial policy are discussed and examples given. The value of the classification notation as a language independent representation and mapping tool should not be sacrificed in such an exercise.
  4. Broughton, V.: Facet analysis as a tool for modelling subject domains and terminologies (2011) 0.01
    0.011369381 = product of:
      0.051162213 = sum of:
        0.03082583 = weight(_text_:bibliographic in 4826) [ClassicSimilarity], result of:
          0.03082583 = score(doc=4826,freq=2.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.21506234 = fieldWeight in 4826, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4826)
        0.020336384 = weight(_text_:data in 4826) [ClassicSimilarity], result of:
          0.020336384 = score(doc=4826,freq=2.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.17468026 = fieldWeight in 4826, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4826)
      0.22222222 = coord(2/9)
    
    Abstract
    Facet analysis is proposed as a general theory of knowledge organization, with an associated methodology that may be applied to the development of terminology tools in a variety of contexts and formats. Faceted classifications originated as a means of representing complexity in semantic content that facilitates logical organization and effective retrieval in a physical environment. This is achieved through meticulous analysis of concepts, their structural and functional status (based on fundamental categories), and their inter-relationships. These features provide an excellent basis for the general conceptual modelling of domains, and for the generation of KOS other than systematic classifications. This is demonstrated by the adoption of a faceted approach to many web search and visualization tools, and by the emergence of a facet based methodology for the construction of thesauri. Current work on the Bliss Bibliographic Classification (Second Edition) is investigating the ways in which the full complexity of faceted structures may be represented through encoded data, capable of generating intellectually and mechanically compatible forms of indexing tools from a single source. It is suggested that a number of research questions relating to the Semantic Web could be tackled through the medium of facet analysis.
  5. Mills, J.: Bibliographic classification (1976) 0.01
    0.010960294 = product of:
      0.09864265 = sum of:
        0.09864265 = weight(_text_:bibliographic in 1272) [ClassicSimilarity], result of:
          0.09864265 = score(doc=1272,freq=2.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.68819946 = fieldWeight in 1272, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.125 = fieldNorm(doc=1272)
      0.11111111 = coord(1/9)
    
  6. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.01
    0.009621484 = product of:
      0.04329668 = sum of:
        0.03082583 = weight(_text_:bibliographic in 3739) [ClassicSimilarity], result of:
          0.03082583 = score(doc=3739,freq=2.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.21506234 = fieldWeight in 3739, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3739)
        0.012470853 = product of:
          0.024941705 = sum of:
            0.024941705 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
              0.024941705 = score(doc=3739,freq=2.0), product of:
                0.12893063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036818076 = queryNorm
                0.19345059 = fieldWeight in 3739, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3739)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  7. Broughton, V.: Bliss Bibliographic Classification Second Edition (2009) 0.01
    0.007750098 = product of:
      0.06975088 = sum of:
        0.06975088 = weight(_text_:bibliographic in 3755) [ClassicSimilarity], result of:
          0.06975088 = score(doc=3755,freq=4.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.4866305 = fieldWeight in 3755, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0625 = fieldNorm(doc=3755)
      0.11111111 = coord(1/9)
    
    Abstract
    This entry looks at the origins of the Bliss Bibliographic Classification 2nd edition and the theory on which it is built. The reasons for the decision to revise the classification are examined, as are the influences on classification theory of the mid-twentieth century. The process of revision and construction of schedules using facet analysis is described. The use of BC2 is considered along with some recent development work on thesaural and digital formats.
  8. Maltby, A.; Gill, L.: ¬The case for Bliss : modern classification practice and principles in the context of the Bibliographic classification (1979) 0.01
    0.0068501844 = product of:
      0.06165166 = sum of:
        0.06165166 = weight(_text_:bibliographic in 3329) [ClassicSimilarity], result of:
          0.06165166 = score(doc=3329,freq=2.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.43012467 = fieldWeight in 3329, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.078125 = fieldNorm(doc=3329)
      0.11111111 = coord(1/9)
    
  9. Thomas, A.R.: Bliss Bibliographic Classification 2nd Edition : principles features and applications (1992) 0.01
    0.0067813364 = product of:
      0.061032027 = sum of:
        0.061032027 = weight(_text_:bibliographic in 541) [ClassicSimilarity], result of:
          0.061032027 = score(doc=541,freq=4.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.4258017 = fieldWeight in 541, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0546875 = fieldNorm(doc=541)
      0.11111111 = coord(1/9)
    
    Abstract
    Publication of the 2nd ed. of the Bliss Bibliographic Classification presents librarians with a fresh opportunity to reassess the nature and benefits of helpful order for their collections and records. Half the parts are now available, exhibiting major expansion, revision, and development of the scheme. The new edition is sponsored by the Bliss Classification Association which welcomes the views and inputs of American librarians. It has been applied to libraries and information centers and used in thesaurus construction. This edition provides intensive subject specifity through detailed term listings and full synthetic capability. The notation is designed to be as brief as possible for the detail attainable. The classification allows a large measure of flexibility in arrangement and syntax
  10. Kaiser, J.O.: Systematic indexing (1985) 0.01
    0.00642973 = product of:
      0.057867568 = sum of:
        0.057867568 = weight(_text_:germany in 571) [ClassicSimilarity], result of:
          0.057867568 = score(doc=571,freq=2.0), product of:
            0.21956629 = queryWeight, product of:
              5.963546 = idf(docFreq=308, maxDocs=44218)
              0.036818076 = queryNorm
            0.26355398 = fieldWeight in 571, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.963546 = idf(docFreq=308, maxDocs=44218)
              0.03125 = fieldNorm(doc=571)
      0.11111111 = coord(1/9)
    
    Abstract
    A native of Germany and a former teacher of languages and music, Julius Otto Kaiser (1868-1927) came to the Philadelphia Commercial Museum to be its librarian in 1896. Faced with the problem of making "information" accessible, he developed a method of indexing he called systematic indexing. The first draft of his scheme, published in 1896-97, was an important landmark in the history of subject analysis. R. K. Olding credits Kaiser with making the greatest single advance in indexing theory since Charles A. Cutter and John Metcalfe eulogizes him by observing that "in sheer capacity for really scientific and logical thinking, Kaiser's was probably the best mind that has ever applied itself to subject indexing." Kaiser was an admirer of "system." By systematic indexing he meant indicating information not with natural language expressions as, for instance, Cutter had advocated, but with artificial expressions constructed according to formulas. Kaiser grudged natural language its approximateness, its vagaries, and its ambiguities. The formulas he introduced were to provide a "machinery for regularising or standardising language" (paragraph 67). Kaiser recognized three categories or "facets" of index terms: (1) terms of concretes, representing things, real or imaginary (e.g., money, machines); (2) terms of processes, representing either conditions attaching to things or their actions (e.g., trade, manufacture); and (3) terms of localities, representing, for the most part, countries (e.g., France, South Africa). Expressions in Kaiser's index language were called statements. Statements consisted of sequences of terms, the syntax of which was prescribed by formula. These formulas specified sequences of terms by reference to category types. Only three citation orders were permitted: a term in the concrete category followed by one in the process category (e.g., Wool-Scouring); (2) a country term followed by a process term (e.g., Brazil - Education); and (3) a concrete term followed by a country term, followed by a process term (e.g., Nitrate-Chile-Trade). Kaiser's system was a precursor of two of the most significant developments in twentieth-century approaches to subject access-the special purpose use of language for indexing, thus the concept of index language, which was to emerge as a generative idea at the time of the second Cranfield experiment (1966) and the use of facets to categorize subject indicators, which was to become the characterizing feature of analytico-synthetic indexing methods such as the Colon classification. In addition to its visionary quality, Kaiser's work is notable for its meticulousness and honesty, as can be seen, for instance, in his observations about the difficulties in facet definition.
  11. Gnoli, C.: Categories and facets in integrative levels (2008) 0.01
    0.005812574 = product of:
      0.052313168 = sum of:
        0.052313168 = weight(_text_:bibliographic in 1806) [ClassicSimilarity], result of:
          0.052313168 = score(doc=1806,freq=4.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.3649729 = fieldWeight in 1806, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.046875 = fieldNorm(doc=1806)
      0.11111111 = coord(1/9)
    
    Abstract
    Facets and general categories used in bibliographic classification have been based on a disciplinary organization of knowledge. However, facets and categories of phenomena independent from disciplines can be identified similarly. Phenomena can be classified according to a series of integrative levels (layers), which in turn can be grouped into the major strata of form, matter, life, mind, society and culture, agreeing with Nicolai Hartmann's ontology. Unlike a layer, a stratum is not constituted of elements of the lower ones; rather, it represents the formal pattern of the lower ones, like the horse hoof represents the shape of the steppe. Bibliographic categories can now be seen in the light of level theory: some categories are truly general, while others only appear at a given level, being the realization of a general category in the specific context of the level: these are the facets of that level. In the notation of the Integrative Level Classification project, categories and facets are represented by digits, and displayed in a Web interface with the help of colours.
  12. Broughton, V.: ¬A faceted classification as the basis of a faceted terminology : conversion of a classified structure to thesaurus format in the Bliss Bibliographic Classification, 2nd Edition (2008) 0.01
    0.005812574 = product of:
      0.052313168 = sum of:
        0.052313168 = weight(_text_:bibliographic in 1857) [ClassicSimilarity], result of:
          0.052313168 = score(doc=1857,freq=4.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.3649729 = fieldWeight in 1857, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.046875 = fieldNorm(doc=1857)
      0.11111111 = coord(1/9)
    
    Abstract
    Facet analysis is an established methodology for building classifications and subject indexing systems, but has been less rigorously applied to thesauri. The process of creating a compatible thesaurus from the schedules of the Bliss Bibliographic Classification 2nd edition highlights the ways in which the conceptual relationships in a subject field are handled in the two types of retrieval languages. An underlying uniformity of theory is established, and the way in which software can manage the relationships is discussed. The manner of displaying verbal expressions of concepts (vocabulary control) is also considered, but is found to be less well controlled in the classification than in the thesaurus. Nevertheless, there is good reason to think that facet analysis provides a sound basis for structuring a variety of knowledge organization tools.
  13. Beghtol, C.: From the universe of knowledge to the universe of concepts : the structural revolution in classification for information retrieval (2008) 0.00
    0.004843811 = product of:
      0.0435943 = sum of:
        0.0435943 = weight(_text_:bibliographic in 1856) [ClassicSimilarity], result of:
          0.0435943 = score(doc=1856,freq=4.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.30414405 = fieldWeight in 1856, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1856)
      0.11111111 = coord(1/9)
    
    Abstract
    During the twentieth century, bibliographic classification theory underwent a structural revolution. The first modern bibliographic classifications were top-down systems that started at the universe of knowledge and subdivided that universe downward to minute subclasses. After the invention of faceted classification by S.R. Ranganathan, the ideal was to build bottom-up classifications that started with the universe of concepts and built upward to larger and larger faceted classes. This ideal has not been achieved, and the two kinds of classification systems are not mutually exclusive. This paper examines the process by which this structural revolution was accomplished by looking at the spread of facet theory after 1924 when Ranganathan attended the School of Librarianship, London, through selected classification textbooks that were published after that date. To this end, the paper examines the role of W.C.B. Sayers as a teacher and author of three editions of The Manual of Classification for Librarians and Bibliographers. Sayers influenced both Ranganathan and the various members of the Classification Research Group (CRG) who were his students. Further, the paper contrasts the methods of evaluating classification systems that arose between Sayers's Canons of Classification in 1915- 1916 and J. Mills's A Modern Outline of Library Classification in 1960 in order to demonstrate the speed with which one kind of classificatory structure was overtaken by another.
  14. Gnoli, C.: ¬The meaning of facets in non-disciplinary classifications (2006) 0.00
    0.004843811 = product of:
      0.0435943 = sum of:
        0.0435943 = weight(_text_:bibliographic in 2291) [ClassicSimilarity], result of:
          0.0435943 = score(doc=2291,freq=4.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.30414405 = fieldWeight in 2291, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2291)
      0.11111111 = coord(1/9)
    
    Abstract
    Disciplines are felt by many to be a constraint in classification, though they are a structuring principle of most bibliographic classification schemes. A non-disciplinary approach has been explored by the Classification Research Group, and research in this direction has been resumed recently by the Integrative Level Classification project. This paper focuses on the role and the definition of facets in non-disciplinary schemes. A generalized definition of facets is suggested with reference to predicate logic, allowing for having facets of phenomena as well as facets of disciplines. The general categories under which facets are often subsumed can be related ontologically to the evolutionary sequence of integrative levels. As a facet can be semantically connected with phenomena from any other part of a general scheme, its values can belong to three types, here called extra-defined foci (either special or general), and context-defined foci. Non-disciplinary freely faceted classification is being tested by applying it to little bibliographic samples stored in a MySQL database, and developing Web search interfaces to demonstrate possible uses of the described techniques.
  15. Giri, K.; Gokhale, P.: Developing a banking service ontology using Protégé, an open source software (2015) 0.00
    0.0045191967 = product of:
      0.040672768 = sum of:
        0.040672768 = weight(_text_:data in 2793) [ClassicSimilarity], result of:
          0.040672768 = score(doc=2793,freq=8.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.34936053 = fieldWeight in 2793, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2793)
      0.11111111 = coord(1/9)
    
    Abstract
    Computers have transformed from single isolated devices to entry points into a worldwide network of information exchange. Consequently, support in the exchange of data, information, and knowledge is becoming the key issue in computer technology today. The increasing volume of data available on the Web makes information retrieval a tedious and difficult task. Researchers are now exploring the possibility of creating a semantic web, in which meaning is made explicit, allowing machines to process and integrate web resources intelligently. The vision of the semantic web introduces the next generation of the Web by establishing a layer of machine-understandable data. The success of the semantic web depends on the easy creation, integration and use of semantic data, which will depend on web ontology. The faceted approach towards analyzing and representing knowledge given by S R Ranganathan would be useful in this regard. Ontology development in different fields is one such area where this approach given by Ranganathan could be applied. This paper presents a case of developing ontology for the field of banking.
  16. Facets: a fruitful notion in many domains : special issue on facet analysis (2008) 0.00
    0.0042653615 = product of:
      0.038388252 = sum of:
        0.038388252 = weight(_text_:readable in 3262) [ClassicSimilarity], result of:
          0.038388252 = score(doc=3262,freq=2.0), product of:
            0.2262076 = queryWeight, product of:
              6.1439276 = idf(docFreq=257, maxDocs=44218)
              0.036818076 = queryNorm
            0.16970363 = fieldWeight in 3262, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.1439276 = idf(docFreq=257, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3262)
      0.11111111 = coord(1/9)
    
    Footnote
    Several of the papers are clearly written as primers and neatly address the second agenda item: attracting others to the study and use of facet analysis. The most valuable papers are written in clear, approachable language. Vickery's paper (p. 145-160) is a clarion call for faceted classification and facet analysis. The heart of the paper is a primer for central concepts and techniques. Vickery explains the value of using faceted classification in document retrieval. Also provided are potential solutions to thorny interface and display issues with facets. Vickery looks to complementary themes in knowledge organization, such as thesauri and ontologies as potential areas for extending the facet concept. Broughton (p. 193-210) describes a rigorous approach to the application of facet analysis in the creation of a compatible thesaurus from the schedules of the 2nd edition of the Bliss Classification (BC2). This discussion of exemplary faceted thesauri, recent standards work, and difficulties encountered in the project will provide valuable guidance for future research in this area. Slavic (p. 257-271) provides a challenge to make faceted classification come 'alive' through promoting the use of machine-readable formats for use and exchange in applications such as Topic Maps and SKOS (Simple Knowledge Organization Systems), and as supported by the standard BS8723 (2005) Structured Vocabulary for Information Retrieval. She also urges designers of faceted classifications to get involved in standards work. Cheti and Paradisi (p. 223-241) outline a basic approach to converting an existing subject indexing tool, the Nuovo Soggetario, into a faceted thesaurus through the use of facet analysis. This discussion, well grounded in the canonical literature, may well serve as a primer for future efforts. Also useful for those who wish to construct faceted thesauri is the article by Tudhope and Binding (p. 211-222). This contains an outline of basic elements to be found in exemplar faceted thesauri, and a discussion of project FACET (Faceted Access to Cultural heritage Terminology) with algorithmically-based semantic query expansion in a dataset composed of items from the National Museum of Science and Industry indexed with AAT (Art and Architecture Thesaurus). This paper looks to the future hybridization of ontologies and facets through standards developments such as SKOS because of the "lightweight semantics" inherent in facets.
  17. Faceted classification today : International UDC Seminar 2017, 14.-15. Spetember, London, UK. (2017) 0.00
    0.003615357 = product of:
      0.032538213 = sum of:
        0.032538213 = weight(_text_:data in 3773) [ClassicSimilarity], result of:
          0.032538213 = score(doc=3773,freq=2.0), product of:
            0.11642061 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.036818076 = queryNorm
            0.2794884 = fieldWeight in 3773, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=3773)
      0.11111111 = coord(1/9)
    
    Abstract
    Faceted analytical theory is a widely accepted approach for constructing modern classification schemes and other controlled vocabularies. While the advantages of faceted approach are broadly accepted and understood the actual implementation is coupled with many challenges when it comes to data modelling, management and retrieval. UDC Seminar 2017 revisits faceted analytical theory as one of the most influential methodologies in the development of knowledge organization systems.
  18. Coates, E.J.: BC2 and BSO : presentation at the 36th Allerton Institute, 1994 session on preparing traditional classifications for the future (1995) 0.00
    0.0034250922 = product of:
      0.03082583 = sum of:
        0.03082583 = weight(_text_:bibliographic in 5566) [ClassicSimilarity], result of:
          0.03082583 = score(doc=5566,freq=2.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.21506234 = fieldWeight in 5566, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5566)
      0.11111111 = coord(1/9)
    
    Abstract
    This article pertains to two further general classifications, which, in contrast to the reigning classifications just mentioned, incorporate in a thoroughgoing manner a modem view of the world. One of these was announced in 1910, to a chorus of disapproval, saw the light of day as a completed scheme in 1935, fell into suspended animation after the death of its author in the 1950s, and was revived, drastically revised and expanded in England by Jack Mills in 1967. A large part of the expanded scheme has appeared in the form of separately published fascicles; the remainder mostly in the areas of science and technology are in an advanced state of preparation. I refer of course to the Bliss Bibliographic Classification. I use the expression "of course" with some slight hesitation having once met a North American library school academic who thought that Henry Evelyn Bliss was an Englishman who lived in the London inner suburb of Islington. This was an unconscious tribute to Jack Mills, though perhaps unfair to Bliss himself, not to mention America, whose son he was.
  19. Broughton, V.: Concepts and terms in the faceted classification : the case of UDC (2010) 0.00
    0.0034250922 = product of:
      0.03082583 = sum of:
        0.03082583 = weight(_text_:bibliographic in 4065) [ClassicSimilarity], result of:
          0.03082583 = score(doc=4065,freq=2.0), product of:
            0.14333439 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.036818076 = queryNorm
            0.21506234 = fieldWeight in 4065, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4065)
      0.11111111 = coord(1/9)
    
    Abstract
    Recent revision of UDC classes has aimed at implementing a more faceted approach. Many compound classes have been removed from the main tables, and more radical revisions of classes (particularly those for Medicine and Religion) have introduced a rigorous analysis, a clearer sense of citation order, and building of compound classes according to a more logical system syntax. The faceted approach provides a means of formalizing the relationships in the classification and making them explicit for machine recognition. In the Bliss Bibliographic Classification (BC2) (which has been a source for both UDC classes mentioned above), terminologies are encoded for automatic generation of hierarchical and associative relationships. Nevertheless, difficulties are encountered in vocabulary control, and a similar phenomenon is observed in UDC. Current work has revealed differences in the vocabulary of humanities and science, notably the way in which terms in the humanities should be handled when these are semantically complex. Achieving a balance between rigour in the structure of the classification and the complexity of natural language expression remains partially unresolved at present, but provides a fertile field for further research.
  20. Dahlberg, I.: Grundlagen universaler Wissensordnung : Probleme und Möglichkeiten eines universalen Klassifikationssystems des Wissens (1974) 0.00
    0.0027713005 = product of:
      0.024941705 = sum of:
        0.024941705 = product of:
          0.04988341 = sum of:
            0.04988341 = weight(_text_:22 in 127) [ClassicSimilarity], result of:
              0.04988341 = score(doc=127,freq=2.0), product of:
                0.12893063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036818076 = queryNorm
                0.38690117 = fieldWeight in 127, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=127)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Footnote
    Zugleich Dissertation Univ. Düsseldorf. - Rez. in: ZfBB. 22(1975) S.53-57 (H.-A. Koch)