Search (30 results, page 1 of 2)

  • × theme_ss:"Visualisierung"
  1. Thissen, F.: Screen-Design-Manual : Communicating Effectively Through Multimedia (2003) 0.04
    0.042152442 = product of:
      0.084304884 = sum of:
        0.084304884 = sum of:
          0.049325574 = weight(_text_:theory in 1397) [ClassicSimilarity], result of:
            0.049325574 = score(doc=1397,freq=2.0), product of:
              0.21471956 = queryWeight, product of:
                4.1583924 = idf(docFreq=1878, maxDocs=44218)
                0.05163523 = queryNorm
              0.2297209 = fieldWeight in 1397, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.1583924 = idf(docFreq=1878, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1397)
          0.034979306 = weight(_text_:22 in 1397) [ClassicSimilarity], result of:
            0.034979306 = score(doc=1397,freq=2.0), product of:
              0.18081778 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05163523 = queryNorm
              0.19345059 = fieldWeight in 1397, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1397)
      0.5 = coord(1/2)
    
    Abstract
    The "Screen Design Manual" provides designers of interactive media with a practical working guide for preparing and presenting information that is suitable for both their target groups and the media they are using. It describes background information and relationships, clarifies them with the help of examples, and encourages further development of the language of digital media. In addition to the basics of the psychology of perception and learning, ergonomics, communication theory, imagery research, and aesthetics, the book also explores the design of navigation and orientation elements. Guidelines and checklists, along with the unique presentation of the book, support the application of information in practice.
    Date
    22. 3.2008 14:29:25
  2. Wu, K.-C.; Hsieh, T.-Y.: Affective choosing of clustering and categorization representations in e-book interfaces (2016) 0.04
    0.042152442 = product of:
      0.084304884 = sum of:
        0.084304884 = sum of:
          0.049325574 = weight(_text_:theory in 3070) [ClassicSimilarity], result of:
            0.049325574 = score(doc=3070,freq=2.0), product of:
              0.21471956 = queryWeight, product of:
                4.1583924 = idf(docFreq=1878, maxDocs=44218)
                0.05163523 = queryNorm
              0.2297209 = fieldWeight in 3070, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.1583924 = idf(docFreq=1878, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3070)
          0.034979306 = weight(_text_:22 in 3070) [ClassicSimilarity], result of:
            0.034979306 = score(doc=3070,freq=2.0), product of:
              0.18081778 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05163523 = queryNorm
              0.19345059 = fieldWeight in 3070, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3070)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The purpose of this paper is to investigate user experiences with a touch-wall interface featuring both clustering and categorization representations of available e-books in a public library to understand human information interactions under work-focused and recreational contexts. Design/methodology/approach - Researchers collected questionnaires from 251 New Taipei City Library visitors who used the touch-wall interface to search for new titles. The authors applied structural equation modelling to examine relationships among hedonic/utilitarian needs, clustering and categorization representations, perceived ease of use (EU) and the extent to which users experienced anxiety and uncertainty (AU) while interacting with the interface. Findings - Utilitarian users who have an explicit idea of what they intend to find tend to prefer the categorization interface. A hedonic-oriented user tends to prefer clustering interfaces. Users reported EU regardless of which interface they engaged with. Results revealed that use of the clustering interface had a negative correlation with AU. Users that seek to satisfy utilitarian needs tended to emphasize the importance of perceived EU, whilst pleasure-seeking users were a little more tolerant of anxiety or uncertainty. Originality/value - The Online Public Access Catalogue (OPAC) encourages library visitors to borrow digital books through the implementation of an information visualization system. This situation poses an opportunity to validate uses and gratification theory. People with hedonic/utilitarian needs displayed different risk-control attitudes and affected uncertainty using the interface. Knowledge about user interaction with such interfaces is vital when launching the development of a new OPAC.
    Date
    20. 1.2015 18:30:22
  3. Batorowska, H.; Kaminska-Czubala, B.: Information retrieval support : visualisation of the information space of a document (2014) 0.03
    0.03372195 = product of:
      0.0674439 = sum of:
        0.0674439 = sum of:
          0.039460458 = weight(_text_:theory in 1444) [ClassicSimilarity], result of:
            0.039460458 = score(doc=1444,freq=2.0), product of:
              0.21471956 = queryWeight, product of:
                4.1583924 = idf(docFreq=1878, maxDocs=44218)
                0.05163523 = queryNorm
              0.18377672 = fieldWeight in 1444, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.1583924 = idf(docFreq=1878, maxDocs=44218)
                0.03125 = fieldNorm(doc=1444)
          0.027983444 = weight(_text_:22 in 1444) [ClassicSimilarity], result of:
            0.027983444 = score(doc=1444,freq=2.0), product of:
              0.18081778 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05163523 = queryNorm
              0.15476047 = fieldWeight in 1444, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1444)
      0.5 = coord(1/2)
    
    Abstract
    Acquiring knowledge in any field involves information retrieval, i.e. searching the available documents to identify answers to the queries concerning the selected objects. Knowing the keywords which are names of the objects will enable situating the user's query in the information space organized as a thesaurus or faceted classification. Objectives: Identification the areas in the information space which correspond to gaps in the user's personal knowledge or in the domain knowledge might become useful in theory or practice. The aim of this paper is to present a realistic information-space model of a self-authored full-text document on information culture, indexed by the author of this article. Methodology: Having established the relations between the terms, particular modules (sets of terms connected by relations used in facet classification) are situated on a plain, similarly to a communication map. Conclusions drawn from the "journey" on the map, which is a visualization of the knowledge contained in the analysed document, are the crucial part of this paper. Results: The direct result of the research is the created model of information space visualization of a given document (book, article, website). The proposed procedure can practically be used as a new form of representation in order to map the contents of academic books and articles, beside the traditional index form, especially as an e-book auxiliary tool. In teaching, visualization of the information space of a document can be used to help students understand the issues of: classification, categorization and representation of new knowledge emerging in human mind.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  4. Gelernter, J.: Visual classification with information visualization (Infoviz) for digital library collections (2007) 0.02
    0.024414912 = product of:
      0.048829824 = sum of:
        0.048829824 = product of:
          0.09765965 = sum of:
            0.09765965 = weight(_text_:theory in 423) [ClassicSimilarity], result of:
              0.09765965 = score(doc=423,freq=4.0), product of:
                0.21471956 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.05163523 = queryNorm
                0.45482418 = fieldWeight in 423, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=423)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The purpose of information visualization (infoviz) is to show information graphically. That purpose is often obscured by infoviz designs that are not well understood in practice. This paper offers an overview of infoviz culled from the literature on applications of information visualization for the digital library: how the clustering works that creates the topics and those topics are represented graphically. It presents a taxonomy of infoviz designs in one, two and three dimensions. It is suggested that user evaluations of infoviz designs might be used to enrich infoviz theory and, whether through application of the theory or through application of user remarks, developers might improve infoviz interface comprehensibility. Design recommendations are made in an effort to improve weaknesses and capitalize on strengths of present interfaces in representing knowledge visually.
  5. Eckert, K: ¬The ICE-map visualization (2011) 0.02
    0.019730229 = product of:
      0.039460458 = sum of:
        0.039460458 = product of:
          0.078920916 = sum of:
            0.078920916 = weight(_text_:theory in 4743) [ClassicSimilarity], result of:
              0.078920916 = score(doc=4743,freq=2.0), product of:
                0.21471956 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.05163523 = queryNorm
                0.36755344 = fieldWeight in 4743, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4743)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this paper, we describe in detail the Information Content Evaluation Map (ICE-Map Visualization, formerly referred to as IC Difference Analysis). The ICE-Map Visualization is a visual data mining approach for all kinds of concept hierarchies that uses statistics about the concept usage to help a user in the evaluation and maintenance of the hierarchy. It consists of a statistical framework that employs the the notion of information content from information theory, as well as a visualization of the hierarchy and the result of the statistical analysis by means of a treemap.
  6. Haller, S.H.M.: Mappingverfahren zur Wissensorganisation (2002) 0.02
    0.017489653 = product of:
      0.034979306 = sum of:
        0.034979306 = product of:
          0.06995861 = sum of:
            0.06995861 = weight(_text_:22 in 3406) [ClassicSimilarity], result of:
              0.06995861 = score(doc=3406,freq=2.0), product of:
                0.18081778 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05163523 = queryNorm
                0.38690117 = fieldWeight in 3406, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3406)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    30. 5.2010 16:22:35
  7. Platis, N. et al.: Visualization of uncertainty in tag clouds (2016) 0.02
    0.017489653 = product of:
      0.034979306 = sum of:
        0.034979306 = product of:
          0.06995861 = sum of:
            0.06995861 = weight(_text_:22 in 2755) [ClassicSimilarity], result of:
              0.06995861 = score(doc=2755,freq=2.0), product of:
                0.18081778 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05163523 = queryNorm
                0.38690117 = fieldWeight in 2755, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2755)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    1. 2.2016 18:25:22
  8. Darányi, S.; Wittek, P.: Demonstrating conceptual dynamics in an evolving text collection (2013) 0.02
    0.017439222 = product of:
      0.034878444 = sum of:
        0.034878444 = product of:
          0.06975689 = sum of:
            0.06975689 = weight(_text_:theory in 1137) [ClassicSimilarity], result of:
              0.06975689 = score(doc=1137,freq=4.0), product of:
                0.21471956 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.05163523 = queryNorm
                0.3248744 = fieldWeight in 1137, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1137)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Based on real-world user demands, we demonstrate how animated visualization of evolving text corpora displays the underlying dynamics of semantic content. To interpret the results, one needs a dynamic theory of word meaning. We suggest that conceptual dynamics as the interaction between kinds of intellectual and emotional content and language is key for such a theory. We demonstrate our method by two-way seriation, which is a popular technique to analyze groups of similar instances and their features as well as the connections between the groups themselves. The two-way seriated data may be visualized as a two-dimensional heat map or as a three-dimensional landscape in which color codes or height correspond to the values in the matrix. In this article, we focus on two-way seriation of sparse data in the Reuters-21568 test collection. To achieve a meaningful visualization, we introduce a compactly supported convolution kernel similar to filter kernels used in image reconstruction and geostatistics. This filter populates the high-dimensional sparse space with values that interpolate nearby elements and provides insight into the clustering structure. We also extend two-way seriation to deal with online updates of both the row and column spaces and, combined with the convolution kernel, demonstrate a three-dimensional visualization of dynamics.
  9. Enser, P.: ¬The evolution of visual information retrieval (2009) 0.02
    0.01726395 = product of:
      0.0345279 = sum of:
        0.0345279 = product of:
          0.0690558 = sum of:
            0.0690558 = weight(_text_:theory in 3659) [ClassicSimilarity], result of:
              0.0690558 = score(doc=3659,freq=2.0), product of:
                0.21471956 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.05163523 = queryNorm
                0.32160926 = fieldWeight in 3659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3659)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper seeks to provide a brief overview of those developments which have taken the theory and practice of image and video retrieval into the digital age. Drawing on a voluminous literature, the context in which visual information retrieval takes place is followed by a consideration of the conceptual and practical challenges posed by the representation and recovery of visual material on the basis of its semantic content. An historical account of research endeavours in content-based retrieval, directed towards the automation of these operations in digital image scenarios, provides the main thrust of the paper. Finally, a look forwards locates visual information retrieval research within the wider context of content-based multimedia retrieval.
  10. Information visualization in data mining and knowledge discovery (2002) 0.02
    0.016860975 = product of:
      0.03372195 = sum of:
        0.03372195 = sum of:
          0.019730229 = weight(_text_:theory in 1789) [ClassicSimilarity], result of:
            0.019730229 = score(doc=1789,freq=2.0), product of:
              0.21471956 = queryWeight, product of:
                4.1583924 = idf(docFreq=1878, maxDocs=44218)
                0.05163523 = queryNorm
              0.09188836 = fieldWeight in 1789, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.1583924 = idf(docFreq=1878, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
          0.013991722 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
            0.013991722 = score(doc=1789,freq=2.0), product of:
              0.18081778 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05163523 = queryNorm
              0.07738023 = fieldWeight in 1789, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
      0.5 = coord(1/2)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    Rez. in: JASIST 54(2003) no.9, S.905-906 (C.A. Badurek): "Visual approaches for knowledge discovery in very large databases are a prime research need for information scientists focused an extracting meaningful information from the ever growing stores of data from a variety of domains, including business, the geosciences, and satellite and medical imagery. This work presents a summary of research efforts in the fields of data mining, knowledge discovery, and data visualization with the goal of aiding the integration of research approaches and techniques from these major fields. The editors, leading computer scientists from academia and industry, present a collection of 32 papers from contributors who are incorporating visualization and data mining techniques through academic research as well application development in industry and government agencies. Information Visualization focuses upon techniques to enhance the natural abilities of humans to visually understand data, in particular, large-scale data sets. It is primarily concerned with developing interactive graphical representations to enable users to more intuitively make sense of multidimensional data as part of the data exploration process. It includes research from computer science, psychology, human-computer interaction, statistics, and information science. Knowledge Discovery in Databases (KDD) most often refers to the process of mining databases for previously unknown patterns and trends in data. Data mining refers to the particular computational methods or algorithms used in this process. The data mining research field is most related to computational advances in database theory, artificial intelligence and machine learning. This work compiles research summaries from these main research areas in order to provide "a reference work containing the collection of thoughts and ideas of noted researchers from the fields of data mining and data visualization" (p. 8). It addresses these areas in three main sections: the first an data visualization, the second an KDD and model visualization, and the last an using visualization in the knowledge discovery process. The seven chapters of Part One focus upon methodologies and successful techniques from the field of Data Visualization. Hoffman and Grinstein (Chapter 2) give a particularly good overview of the field of data visualization and its potential application to data mining. An introduction to the terminology of data visualization, relation to perceptual and cognitive science, and discussion of the major visualization display techniques are presented. Discussion and illustration explain the usefulness and proper context of such data visualization techniques as scatter plots, 2D and 3D isosurfaces, glyphs, parallel coordinates, and radial coordinate visualizations. Remaining chapters present the need for standardization of visualization methods, discussion of user requirements in the development of tools, and examples of using information visualization in addressing research problems.
  11. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.01
    0.014840463 = product of:
      0.029680926 = sum of:
        0.029680926 = product of:
          0.059361853 = sum of:
            0.059361853 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.059361853 = score(doc=3355,freq=4.0), product of:
                0.18081778 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05163523 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  12. Wainer, H.: Picturing the uncertain world : how to understand, communicate, and control uncertainty through graphical display (2009) 0.01
    0.013951378 = product of:
      0.027902756 = sum of:
        0.027902756 = product of:
          0.05580551 = sum of:
            0.05580551 = weight(_text_:theory in 1451) [ClassicSimilarity], result of:
              0.05580551 = score(doc=1451,freq=4.0), product of:
                0.21471956 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.05163523 = queryNorm
                0.25989953 = fieldWeight in 1451, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1451)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    LCSH
    Uncertainty (Information theory) / Graphic methods
    Subject
    Uncertainty (Information theory) / Graphic methods
  13. Hajdu Barat, A.: Human perception and knowledge organization : visual imagery (2007) 0.01
    0.012331394 = product of:
      0.024662787 = sum of:
        0.024662787 = product of:
          0.049325574 = sum of:
            0.049325574 = weight(_text_:theory in 2595) [ClassicSimilarity], result of:
              0.049325574 = score(doc=2595,freq=2.0), product of:
                0.21471956 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.05163523 = queryNorm
                0.2297209 = fieldWeight in 2595, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2595)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - This paper aims to explore the theory and practice of knowledge organization and its necessary connection to human perception, and shows a solution of the potential ones. Design/methodology/approach - The author attempts to survey the problem of concept-building and extension, as well as the determination of semantics in different aspects. The purpose is to find criteria for the choice of the solution that best incorporates users into the design cycles of knowledge organization systems. Findings - It is widely agreed that cognition provides the basis for concept-building; however, at the next stage of processing there is a debate. Fundamentally, what is the connection between perception and the superior cognitive processes? The perceptual method does not separate these two but rather considers them united, with perception permeating cognition. By contrast, the linguistic method considers perception as an information-receiving system. Separate from, and following, perception, the cognitive subsystems then perform information and data processing, leading to both knowledge organization and representation. We assume by that model that top-level concepts emerge from knowledge organization and representation. This paper points obvious connection of visual imagery and the internet; perceptual access of knowledge organization and information retrieval. There are some practical and characteristic solutions for the visualization of information without demand of completeness. Research limitations/implications - Librarians need to identify those semantic characteristics which stimulate a similar conceptual image both in the mind of the librarian and in the mind of the user. Originality/value - For a fresh perspective, an understanding of perception is required as well.
  14. Heuvel, C. van den; Salah, A.A.; Knowledge Space Lab: Visualizing universes of knowledge : design and visual analysis of the UDC (2011) 0.01
    0.012331394 = product of:
      0.024662787 = sum of:
        0.024662787 = product of:
          0.049325574 = sum of:
            0.049325574 = weight(_text_:theory in 4831) [ClassicSimilarity], result of:
              0.049325574 = score(doc=4831,freq=2.0), product of:
                0.21471956 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.05163523 = queryNorm
                0.2297209 = fieldWeight in 4831, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4831)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In the 1950s, the "universe of knowledge" metaphor returned in discussions around the "first theory of faceted classification'; the Colon Classification (CC) of S.R. Ranganathan, to stress the differences within an "universe of concepts" system. Here we claim that the Universal Decimal Classification (UDC) has been either ignored or incorrectly represented in studies that focused on the pivotal role of Ranganathan in a transition from "top-down universe of concepts systems" to "bottom-up universe of concepts systems." Early 20th century designs from Paul Otlet reveal a two directional interaction between "elements" and "ensembles"that can be compared to the relations between the universe of knowledge and universe of concepts systems. Moreover, an unpublished manuscript with the title "Theorie schematique de la Classification" of 1908 includes sketches that demonstrate an exploration by Paul Otlet of the multidimensional characteristics of the UDC. The interactions between these one- and multidimensional representations of the UDC support Donker Duyvis' critical comments to Ranganathan who had dismissed it as a rigid hierarchical system in comparison to his own Colon Classification. A visualization of the experiments of the Knowledge Space Lab in which main categories of Wikipedia were mapped on the UDC provides empirical evidence of its faceted structure's flexibility.
  15. Julien, C.-A.; Tirilly, P.; Dinneen, J.D.; Guastavino, C.: Reducing subject tree browsing complexity (2013) 0.01
    0.012331394 = product of:
      0.024662787 = sum of:
        0.024662787 = product of:
          0.049325574 = sum of:
            0.049325574 = weight(_text_:theory in 1102) [ClassicSimilarity], result of:
              0.049325574 = score(doc=1102,freq=2.0), product of:
                0.21471956 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.05163523 = queryNorm
                0.2297209 = fieldWeight in 1102, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1102)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Many large digital collections are currently organized by subject; although useful, these information organization structures are large and complex and thus difficult to browse. Current online tools and visualization prototypes show small, localized subsets and do not provide the ability to explore the predominant patterns of the overall subject structure. This study describes subject tree modifications that facilitate browsing for documents by capitalizing on the highly uneven distribution of real-world collections. The approach is demonstrated on two large collections organized by the Library of Congress Subject Headings (LCSH) and Medical Subject Headings (MeSH). Results show that the LCSH subject tree can be reduced to 49% of its initial complexity while maintaining access to 83% of the collection, and the MeSH tree can be reduced to 45% of its initial complexity while maintaining access to 97% of the collection. A simple solution to negate the loss of access is discussed. The visual impact is demonstrated by using traditional outline views and a slider control allowing searchers to change the subject structure dynamically according to their needs. This study has implications for the development of information organization theory and human-information interaction techniques for subject trees.
  16. Oh, K.E.; Halpern, D.; Tremaine, M.; Chiang, J.; Silver, D.; Bemis, K.: Blocked: when the information is hidden by the visualization (2016) 0.01
    0.012331394 = product of:
      0.024662787 = sum of:
        0.024662787 = product of:
          0.049325574 = sum of:
            0.049325574 = weight(_text_:theory in 2888) [ClassicSimilarity], result of:
              0.049325574 = score(doc=2888,freq=2.0), product of:
                0.21471956 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.05163523 = queryNorm
                0.2297209 = fieldWeight in 2888, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2888)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study investigated how people comprehend three-dimensional (3D) visualizations and what properties of such visualizations affect comprehension. Participants were asked to draw the face of a 3D visualization after it was cut in half. We videotaped the participants as they drew, erased, verbalized their thoughts, gestured, and moved about a two-dimensional paper presentation of the 3D visualization. The videorecords were analyzed using a grounded theory approach to generate hypotheses related to comprehension difficulties and visualization properties. Our analysis of the results uncovered three properties that made problem solving more difficult for participants. These were: (a) cuts that were at an angle in relation to at least one plane of reference, (b) nonplanar properties of the features contained in the 3D visualizations including curved layers and v-shaped layers, and (c) mixed combinations of layers. In contrast, (a) cutting planes that were perpendicular or parallel to the 3D visualization diagram's planes of reference, (b) internal features that were flat/planar, and (c) homogeneous layers were easier to comprehend. This research has direct implications for the generation and use of 3D information visualizations in that it suggests design features to include and avoid.
  17. Trunk, D.: Semantische Netze in Informationssystemen : Verbesserung der Suche durch Interaktion und Visualisierung (2005) 0.01
    0.012242757 = product of:
      0.024485514 = sum of:
        0.024485514 = product of:
          0.048971027 = sum of:
            0.048971027 = weight(_text_:22 in 2500) [ClassicSimilarity], result of:
              0.048971027 = score(doc=2500,freq=2.0), product of:
                0.18081778 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05163523 = queryNorm
                0.2708308 = fieldWeight in 2500, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2500)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    30. 1.2007 18:22:41
  18. Palm, F.: QVIZ : Query and context based visualization of time-spatial cultural dynamics (2007) 0.01
    0.010493792 = product of:
      0.020987583 = sum of:
        0.020987583 = product of:
          0.041975167 = sum of:
            0.041975167 = weight(_text_:22 in 1289) [ClassicSimilarity], result of:
              0.041975167 = score(doc=1289,freq=2.0), product of:
                0.18081778 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05163523 = queryNorm
                0.23214069 = fieldWeight in 1289, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1289)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Vortrag anlässlich des Workshops: "Extending the multilingual capacity of The European Library in the EDL project Stockholm, Swedish National Library, 22-23 November 2007".
  19. Thissen, F.: Screen-Design-Handbuch : Effektiv informieren und kommunizieren mit Multimedia (2001) 0.01
    0.010493792 = product of:
      0.020987583 = sum of:
        0.020987583 = product of:
          0.041975167 = sum of:
            0.041975167 = weight(_text_:22 in 1781) [ClassicSimilarity], result of:
              0.041975167 = score(doc=1781,freq=2.0), product of:
                0.18081778 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05163523 = queryNorm
                0.23214069 = fieldWeight in 1781, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1781)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2008 14:35:21
  20. Osinska, V.; Bala, P.: New methods for visualization and improvement of classification schemes : the case of computer science (2010) 0.01
    0.010493792 = product of:
      0.020987583 = sum of:
        0.020987583 = product of:
          0.041975167 = sum of:
            0.041975167 = weight(_text_:22 in 3693) [ClassicSimilarity], result of:
              0.041975167 = score(doc=3693,freq=2.0), product of:
                0.18081778 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05163523 = queryNorm
                0.23214069 = fieldWeight in 3693, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3693)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2010 19:36:46

Languages

  • e 24
  • d 5
  • a 1
  • More… Less…

Types