Search (14 results, page 1 of 1)

  • × theme_ss:"Informetrie"
  • × year_i:[2020 TO 2030}
  1. Thelwall, M.; Kousha, K.; Abdoli, M.; Stuart, E.; Makita, M.; Wilson, P.; Levitt, J.: Why are coauthored academic articles more cited : higher quality or larger audience? (2023) 0.06
    0.059919223 = product of:
      0.11983845 = sum of:
        0.11983845 = sum of:
          0.08545842 = weight(_text_:assessment in 995) [ClassicSimilarity], result of:
            0.08545842 = score(doc=995,freq=2.0), product of:
              0.2801951 = queryWeight, product of:
                5.52102 = idf(docFreq=480, maxDocs=44218)
                0.050750602 = queryNorm
              0.30499613 = fieldWeight in 995, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.52102 = idf(docFreq=480, maxDocs=44218)
                0.0390625 = fieldNorm(doc=995)
          0.03438003 = weight(_text_:22 in 995) [ClassicSimilarity], result of:
            0.03438003 = score(doc=995,freq=2.0), product of:
              0.17771997 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050750602 = queryNorm
              0.19345059 = fieldWeight in 995, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=995)
      0.5 = coord(1/2)
    
    Abstract
    Collaboration is encouraged because it is believed to improve academic research, supported by indirect evidence in the form of more coauthored articles being more cited. Nevertheless, this might not reflect quality but increased self-citations or the "audience effect": citations from increased awareness through multiple author networks. We address this with the first science wide investigation into whether author numbers associate with journal article quality, using expert peer quality judgments for 122,331 articles from the 2014-20 UK national assessment. Spearman correlations between author numbers and quality scores show moderately strong positive associations (0.2-0.4) in the health, life, and physical sciences, but weak or no positive associations in engineering and social sciences, with weak negative/positive or no associations in various arts and humanities, and a possible negative association for decision sciences. This gives the first systematic evidence that greater numbers of authors associates with higher quality journal articles in the majority of academia outside the arts and humanities, at least for the UK. Positive associations between team size and citation counts in areas with little association between team size and quality also show that audience effects or other nonquality factors account for the higher citation rates of coauthored articles in some fields.
    Date
    22. 6.2023 18:11:50
  2. Kulczycki, E.; Huang, Y.; Zuccala, A.A.; Engels, T.C.E.; Ferrara, A.; Guns, R.; Pölönen, J.; Sivertsen, G.; Taskin, Z.; Zhang, L.: Uses of the Journal Impact Factor in national journal rankings in China and Europe (2022) 0.03
    0.030214114 = product of:
      0.06042823 = sum of:
        0.06042823 = product of:
          0.12085646 = sum of:
            0.12085646 = weight(_text_:assessment in 769) [ClassicSimilarity], result of:
              0.12085646 = score(doc=769,freq=4.0), product of:
                0.2801951 = queryWeight, product of:
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.050750602 = queryNorm
                0.43132967 = fieldWeight in 769, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=769)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper investigates different uses of the Journal Impact Factor (JIF) in national journal rankings and discusses the merits of supplementing metrics with expert assessment. Our focus is national journal rankings used as evidence to support decisions about the distribution of institutional funding or career advancement. The seven countries under comparison are China, Denmark, Finland, Italy, Norway, Poland, and Turkey-and the region of Flanders in Belgium. With the exception of Italy, top-tier journals used in national rankings include those classified at the highest level, or according to tier, or points implemented. A total of 3,565 (75.8%) out of 4,701 unique top-tier journals were identified as having a JIF, with 55.7% belonging to the first Journal Impact Factor quartile. Journal rankings in China, Flanders, Poland, and Turkey classify journals with a JIF as being top-tier, but only when they are in the first quartile of the Average Journal Impact Factor Percentile. Journal rankings that result from expert assessment in Denmark, Finland, and Norway regularly classify journals as top-tier outside the first quartile, particularly in the social sciences and humanities. We conclude that experts, when tasked with metric-informed journal rankings, take into account quality dimensions that are not covered by JIFs.
  3. Thelwall, M.; Kousha, K.; Abdoli, M.; Stuart, E.; Makita, M.; Wilson, P.; Levitt, J.: Do altmetric scores reflect article quality? : evidence from the UK Research Excellence Framework 2021 (2023) 0.03
    0.030214114 = product of:
      0.06042823 = sum of:
        0.06042823 = product of:
          0.12085646 = sum of:
            0.12085646 = weight(_text_:assessment in 947) [ClassicSimilarity], result of:
              0.12085646 = score(doc=947,freq=4.0), product of:
                0.2801951 = queryWeight, product of:
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.050750602 = queryNorm
                0.43132967 = fieldWeight in 947, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=947)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Altmetrics are web-based quantitative impact or attention indicators for academic articles that have been proposed to supplement citation counts. This article reports the first assessment of the extent to which mature altmetrics from Altmetric.com and Mendeley associate with individual article quality scores. It exploits expert norm-referenced peer review scores from the UK Research Excellence Framework 2021 for 67,030+ journal articles in all fields 2014-2017/2018, split into 34 broadly field-based Units of Assessment (UoAs). Altmetrics correlated more strongly with research quality than previously found, although less strongly than raw and field normalized Scopus citation counts. Surprisingly, field normalizing citation counts can reduce their strength as a quality indicator for articles in a single field. For most UoAs, Mendeley reader counts are the best altmetric (e.g., three Spearman correlations with quality scores above 0.5), tweet counts are also a moderate strength indicator in eight UoAs (Spearman correlations with quality scores above 0.3), ahead of news (eight correlations above 0.3, but generally weaker), blogs (five correlations above 0.3), and Facebook (three correlations above 0.3) citations, at least in the United Kingdom. In general, altmetrics are the strongest indicators of research quality in the health and physical sciences and weakest in the arts and humanities.
  4. Haley, M.R.: ¬A simple paradigm for augmenting the Euclidean index to reflect journal impact and visibility (2020) 0.03
    0.025637524 = product of:
      0.05127505 = sum of:
        0.05127505 = product of:
          0.1025501 = sum of:
            0.1025501 = weight(_text_:assessment in 5676) [ClassicSimilarity], result of:
              0.1025501 = score(doc=5676,freq=2.0), product of:
                0.2801951 = queryWeight, product of:
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.050750602 = queryNorm
                0.36599535 = fieldWeight in 5676, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5676)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article offers an adjustment to the recently developed Euclidean Index (Perry and Reny, 2016). The proposed companion metric reflects the impact of the journal in which an article appears; the rationale for incorporating this information is to reflect higher costs of production and higher review standards, and to mitigate the heavily truncated citation counts that often arise in promotion, renewal, and tenure deliberations. Additionally, focusing jointly on citations and journal impact diversifies the assessment process, and can thereby help avoid misjudging scholars with modest citation counts in high-level journals. A combination of both metrics is also proposed, which nests each as a special case. The approach is demonstrated using a generic journal ranking metric, but can be adapted to most any stated or revealed preference measure of journal impact.
  5. Thelwall, M.; Kousha, K.; Stuart, E.; Makita, M.; Abdoli, M.; Wilson, P.; Levitt, J.: In which fields are citations indicators of research quality? (2023) 0.02
    0.021364605 = product of:
      0.04272921 = sum of:
        0.04272921 = product of:
          0.08545842 = sum of:
            0.08545842 = weight(_text_:assessment in 1033) [ClassicSimilarity], result of:
              0.08545842 = score(doc=1033,freq=2.0), product of:
                0.2801951 = queryWeight, product of:
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.050750602 = queryNorm
                0.30499613 = fieldWeight in 1033, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1033)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Citation counts are widely used as indicators of research quality to support or replace human peer review and for lists of top cited papers, researchers, and institutions. Nevertheless, the relationship between citations and research quality is poorly evidenced. We report the first large-scale science-wide academic evaluation of the relationship between research quality and citations (field normalized citation counts), correlating them for 87,739 journal articles in 34 field-based UK Units of Assessment (UoA). The two correlate positively in all academic fields, from very weak (0.1) to strong (0.5), reflecting broadly linear relationships in all fields. We give the first evidence that the correlations are positive even across the arts and humanities. The patterns are similar for the field classification schemes of Scopus and Dimensions.ai, although varying for some individual subjects and therefore more uncertain for these. We also show for the first time that no field has a citation threshold beyond which all articles are excellent quality, so lists of top cited articles are not pure collections of excellence, and neither is any top citation percentile indicator. Thus, while appropriately field normalized citations associate positively with research quality in all fields, they never perfectly reflect it, even at high values.
  6. Manley, S.: Letters to the editor and the race for publication metrics (2022) 0.01
    0.012033011 = product of:
      0.024066022 = sum of:
        0.024066022 = product of:
          0.048132043 = sum of:
            0.048132043 = weight(_text_:22 in 547) [ClassicSimilarity], result of:
              0.048132043 = score(doc=547,freq=2.0), product of:
                0.17771997 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050750602 = queryNorm
                0.2708308 = fieldWeight in 547, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=547)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    6. 4.2022 19:22:26
  7. Lorentzen, D.G.: Bridging polarised Twitter discussions : the interactions of the users in the middle (2021) 0.01
    0.010314009 = product of:
      0.020628018 = sum of:
        0.020628018 = product of:
          0.041256037 = sum of:
            0.041256037 = weight(_text_:22 in 182) [ClassicSimilarity], result of:
              0.041256037 = score(doc=182,freq=2.0), product of:
                0.17771997 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050750602 = queryNorm
                0.23214069 = fieldWeight in 182, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=182)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    20. 1.2015 18:30:22
  8. Milard, B.; Pitarch, Y.: Egocentric cocitation networks and scientific papers destinies (2023) 0.01
    0.010314009 = product of:
      0.020628018 = sum of:
        0.020628018 = product of:
          0.041256037 = sum of:
            0.041256037 = weight(_text_:22 in 918) [ClassicSimilarity], result of:
              0.041256037 = score(doc=918,freq=2.0), product of:
                0.17771997 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050750602 = queryNorm
                0.23214069 = fieldWeight in 918, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=918)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    21. 3.2023 19:22:14
  9. Thelwall, M.; Thelwall, S.: ¬A thematic analysis of highly retweeted early COVID-19 tweets : consensus, information, dissent and lockdown life (2020) 0.01
    0.0085950075 = product of:
      0.017190015 = sum of:
        0.017190015 = product of:
          0.03438003 = sum of:
            0.03438003 = weight(_text_:22 in 178) [ClassicSimilarity], result of:
              0.03438003 = score(doc=178,freq=2.0), product of:
                0.17771997 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050750602 = queryNorm
                0.19345059 = fieldWeight in 178, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=178)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    20. 1.2015 18:30:22
  10. Wang, S.; Ma, Y.; Mao, J.; Bai, Y.; Liang, Z.; Li, G.: Quantifying scientific breakthroughs by a novel disruption indicator based on knowledge entities : On the rise of scrape-and-report scholarship in online reviews research (2023) 0.01
    0.0085950075 = product of:
      0.017190015 = sum of:
        0.017190015 = product of:
          0.03438003 = sum of:
            0.03438003 = weight(_text_:22 in 882) [ClassicSimilarity], result of:
              0.03438003 = score(doc=882,freq=2.0), product of:
                0.17771997 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050750602 = queryNorm
                0.19345059 = fieldWeight in 882, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=882)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2023 18:37:33
  11. Cerda-Cosme, R.; Méndez, E.: Analysis of shared research data in Spanish scientific papers about COVID-19 : a first approach (2023) 0.01
    0.0085950075 = product of:
      0.017190015 = sum of:
        0.017190015 = product of:
          0.03438003 = sum of:
            0.03438003 = weight(_text_:22 in 916) [ClassicSimilarity], result of:
              0.03438003 = score(doc=916,freq=2.0), product of:
                0.17771997 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050750602 = queryNorm
                0.19345059 = fieldWeight in 916, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=916)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    21. 3.2023 19:22:02
  12. Asubiaro, T.V.; Onaolapo, S.: ¬A comparative study of the coverage of African journals in Web of Science, Scopus, and CrossRef (2023) 0.01
    0.0085950075 = product of:
      0.017190015 = sum of:
        0.017190015 = product of:
          0.03438003 = sum of:
            0.03438003 = weight(_text_:22 in 992) [ClassicSimilarity], result of:
              0.03438003 = score(doc=992,freq=2.0), product of:
                0.17771997 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050750602 = queryNorm
                0.19345059 = fieldWeight in 992, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=992)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 6.2023 14:09:06
  13. Zhang, Y.; Wu, M.; Zhang, G.; Lu, J.: Stepping beyond your comfort zone : diffusion-based network analytics for knowledge trajectory recommendation (2023) 0.01
    0.0085950075 = product of:
      0.017190015 = sum of:
        0.017190015 = product of:
          0.03438003 = sum of:
            0.03438003 = weight(_text_:22 in 994) [ClassicSimilarity], result of:
              0.03438003 = score(doc=994,freq=2.0), product of:
                0.17771997 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050750602 = queryNorm
                0.19345059 = fieldWeight in 994, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=994)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 6.2023 18:07:12
  14. Vakkari, P.; Järvelin, K.; Chang, Y.-W.: ¬The association of disciplinary background with the evolution of topics and methods in Library and Information Science research 1995-2015 (2023) 0.01
    0.0085950075 = product of:
      0.017190015 = sum of:
        0.017190015 = product of:
          0.03438003 = sum of:
            0.03438003 = weight(_text_:22 in 998) [ClassicSimilarity], result of:
              0.03438003 = score(doc=998,freq=2.0), product of:
                0.17771997 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050750602 = queryNorm
                0.19345059 = fieldWeight in 998, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=998)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 6.2023 18:15:06