Search (40 results, page 1 of 2)

  • × theme_ss:"Visualisierung"
  1. Tang, M.-C.: Browsing and searching in a faceted information space : a naturalistic study of PubMed users' interaction with a display tool (2007) 0.04
    0.04356204 = product of:
      0.06534306 = sum of:
        0.04243408 = weight(_text_:bibliographic in 617) [ClassicSimilarity], result of:
          0.04243408 = score(doc=617,freq=2.0), product of:
            0.19731061 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.05068286 = queryNorm
            0.21506234 = fieldWeight in 617, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=617)
        0.02290898 = product of:
          0.04581796 = sum of:
            0.04581796 = weight(_text_:searching in 617) [ClassicSimilarity], result of:
              0.04581796 = score(doc=617,freq=2.0), product of:
                0.20502694 = queryWeight, product of:
                  4.0452914 = idf(docFreq=2103, maxDocs=44218)
                  0.05068286 = queryNorm
                0.22347288 = fieldWeight in 617, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0452914 = idf(docFreq=2103, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=617)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The study adopts a naturalistic approach to investigate users' interaction with a browsable MeSH (medical subject headings) display designed to facilitate query construction for the PubMed bibliographic database. The purpose of the study is twofold: first, to test the usefulness of a browsable interface utilizing the principle of faceted classification; and second, to investigate users' preferred query submission methods in different problematic situations. An interface that incorporated multiple query submission methods - the conventional single-line query box as well as methods associated the faceted classification display was constructed. Participants' interactions with the interface were monitored remotely over a period of 10 weeks; information about their problematic situations and information retrieval behaviors were also collected during this time. The traditional controlled experiment was not adequate in answering the author's research questions; hence, the author provides his rationale for a naturalistic approach. The study's findings show that there is indeed a selective compatibility between query submission methods provided by the MeSH display and users' problematic situations. The query submission methods associated with the display were found to be the preferred search tools when users' information needs were vague and the search topics unfamiliar. The findings support the theoretical proposition that users engaging in an information retrieval process with a variety of problematic situations need different approaches. The author argues that rather than treat the information retrieval system as a general purpose tool, more attention should be given to the interaction between the functionality of the tool and the characteristics of users' problematic situations.
  2. Osinska, V.; Kowalska, M.; Osinski, Z.: ¬The role of visualization in the shaping and exploration of the individual information space : part 1 (2018) 0.04
    0.039734103 = product of:
      0.05960115 = sum of:
        0.04243408 = weight(_text_:bibliographic in 4641) [ClassicSimilarity], result of:
          0.04243408 = score(doc=4641,freq=2.0), product of:
            0.19731061 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.05068286 = queryNorm
            0.21506234 = fieldWeight in 4641, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4641)
        0.017167069 = product of:
          0.034334138 = sum of:
            0.034334138 = weight(_text_:22 in 4641) [ClassicSimilarity], result of:
              0.034334138 = score(doc=4641,freq=2.0), product of:
                0.17748274 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05068286 = queryNorm
                0.19345059 = fieldWeight in 4641, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4641)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Studies on the state and structure of digital knowledge concerning science generally relate to macro and meso scales. Supported by visualizations, these studies can deliver knowledge about emerging scientific fields or collaboration between countries, scientific centers, or groups of researchers. Analyses of individual activities or single scientific career paths are rarely presented and discussed. The authors decided to fill this gap and developed a web application for visualizing the scientific output of particular researchers. This free software based on bibliographic data from local databases, provides six layouts for analysis. Researchers can see the dynamic characteristics of their own writing activity, the time and place of publication, and the thematic scope of research problems. They can also identify cooperation networks, and consequently, study the dependencies and regularities in their own scientific activity. The current article presents the results of a study of the application's usability and functionality as well as attempts to define different user groups. A survey about the interface was sent to select researchers employed at Nicolaus Copernicus University. The results were used to answer the question as to whether such a specialized visualization tool can significantly augment the individual information space of the contemporary researcher.
    Date
    21.12.2018 17:22:13
  3. Salaba, A.; Mercun, T.; Aalberg, T.: Complexity of work families and entity-based visualization displays (2018) 0.04
    0.03960514 = product of:
      0.11881542 = sum of:
        0.11881542 = weight(_text_:bibliographic in 5184) [ClassicSimilarity], result of:
          0.11881542 = score(doc=5184,freq=8.0), product of:
            0.19731061 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.05068286 = queryNorm
            0.6021745 = fieldWeight in 5184, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5184)
      0.33333334 = coord(1/3)
    
    Abstract
    Conceptual modeling of bibliographic data, including the FR models and the consolidated IFLA LRM, has provided an opportunity to shift focus to entities and relationships and to support hierarchical work-based exploration of bibliographic information. This paper reports on a study examining the complexity of a work's bibliographic family data and user interactions with data visualizations, compared to traditional displays. Findings suggest that the FRBR-based visual bibliographic information system supports work families of different complexities more equally than a traditional system. Differences between the two systems also show that the FRBR-based system was more effective especially for related-works and author-related tasks.
  4. Zhu, Y.; Yan, E.; Song, I.-Y..: ¬The use of a graph-based system to improve bibliographic information retrieval : system design, implementation, and evaluation (2017) 0.04
    0.037954196 = product of:
      0.11386259 = sum of:
        0.11386259 = weight(_text_:bibliographic in 3356) [ClassicSimilarity], result of:
          0.11386259 = score(doc=3356,freq=10.0), product of:
            0.19731061 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.05068286 = queryNorm
            0.5770728 = fieldWeight in 3356, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.046875 = fieldNorm(doc=3356)
      0.33333334 = coord(1/3)
    
    Abstract
    In this article, we propose a graph-based interactive bibliographic information retrieval system-GIBIR. GIBIR provides an effective way to retrieve bibliographic information. The system represents bibliographic information as networks and provides a form-based query interface. Users can develop their queries interactively by referencing the system-generated graph queries. Complex queries such as "papers on information retrieval, which were cited by John's papers that had been presented in SIGIR" can be effectively answered by the system. We evaluate the proposed system by developing another relational database-based bibliographic information retrieval system with the same interface and functions. Experiment results show that the proposed system executes the same queries much faster than the relational database-based system, and on average, our system reduced the execution time by 72% (for 3-node query), 89% (for 4-node query), and 99% (for 5-node query).
  5. Mercun, T.; Zumer, M.; Aalberg, T.: Presenting bibliographic families using information visualization : evaluation of FRBR-based prototype and hierarchical visualizations (2017) 0.03
    0.03464728 = product of:
      0.103941835 = sum of:
        0.103941835 = weight(_text_:bibliographic in 3350) [ClassicSimilarity], result of:
          0.103941835 = score(doc=3350,freq=12.0), product of:
            0.19731061 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.05068286 = queryNorm
            0.52679294 = fieldWeight in 3350, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3350)
      0.33333334 = coord(1/3)
    
    Abstract
    Since their beginnings, bibliographic information systems have been displaying results in the form of long, textual lists. With the development of new data models and computer technologies, the need for new approaches to present and interact with bibliographic data has slowly been maturing. To investigate how this could be accomplished, a prototype system, FrbrVis1, was designed to present work families within a bibliographic information system using information visualization. This paper reports on two user studies, a controlled and an observational experiment, that have been carried out to assess the Functional Requirements for Bibliographic Records (FRBR)-based against an existing system as well as to test four different hierarchical visual layouts. The results clearly show that FrbrVis offers better performance and user experience compared to the baseline system. The differences between the four hierarchical visualizations (Indented tree, Radial tree, Circlepack, and Sunburst) were, on the other hand, not as pronounced, but the Indented tree and Sunburst design proved to be the most successful, both in performance as well as user perception. The paper therefore not only evaluates the application of a visual presentation of bibliographic work families, but also provides valuable results regarding the performance and user acceptance of individual hierarchical visualization techniques.
  6. Pejtersen, A.M.: Implications of users' value perception for the design of a bibliographic retrieval system (1986) 0.03
    0.033947267 = product of:
      0.10184179 = sum of:
        0.10184179 = weight(_text_:bibliographic in 2961) [ClassicSimilarity], result of:
          0.10184179 = score(doc=2961,freq=2.0), product of:
            0.19731061 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.05068286 = queryNorm
            0.5161496 = fieldWeight in 2961, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.09375 = fieldNorm(doc=2961)
      0.33333334 = coord(1/3)
    
  7. Mercun, T.; Zumer, M.; Aalberg, T.: Presenting bibliographic families : Designing an FRBR-based prototype using information visualization (2016) 0.03
    0.031628497 = product of:
      0.09488549 = sum of:
        0.09488549 = weight(_text_:bibliographic in 2879) [ClassicSimilarity], result of:
          0.09488549 = score(doc=2879,freq=10.0), product of:
            0.19731061 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.05068286 = queryNorm
            0.480894 = fieldWeight in 2879, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2879)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - Despite the importance of bibliographic information systems for discovering and exploring library resources, some of the core functionality that should be provided to support users in their information seeking process is still missing. Investigating these issues, the purpose of this paper is to design a solution that would fulfil the missing objectives. Design/methodology/approach - Building on the concepts of a work family, functional requirements for bibliographic records (FRBR) and information visualization, the paper proposes a model and user interface design that could support a more efficient and user-friendly presentation and navigation in bibliographic information systems. Findings - The proposed design brings together all versions of a work, related works, and other works by and about the author and shows how the model was implemented into a FrbrVis prototype system using hierarchical visualization layout. Research limitations/implications - Although issues related to discovery and exploration apply to various material types, the research first focused on works of fiction and was also limited by the selected sample of records. Practical implications - The model for presenting and interacting with FRBR-based data can serve as a good starting point for future developments and implementations. Originality/value - With FRBR concepts being gradually integrated into cataloguing rules, formats, and various bibliographic services, one of the important questions that has not really been investigated and studied is how the new type of data would be presented to users in a way that would exploit the true potential of the changes.
  8. Batorowska, H.; Kaminska-Czubala, B.: Information retrieval support : visualisation of the information space of a document (2014) 0.02
    0.021373894 = product of:
      0.06412168 = sum of:
        0.06412168 = sum of:
          0.036654368 = weight(_text_:searching in 1444) [ClassicSimilarity], result of:
            0.036654368 = score(doc=1444,freq=2.0), product of:
              0.20502694 = queryWeight, product of:
                4.0452914 = idf(docFreq=2103, maxDocs=44218)
                0.05068286 = queryNorm
              0.1787783 = fieldWeight in 1444, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.0452914 = idf(docFreq=2103, maxDocs=44218)
                0.03125 = fieldNorm(doc=1444)
          0.02746731 = weight(_text_:22 in 1444) [ClassicSimilarity], result of:
            0.02746731 = score(doc=1444,freq=2.0), product of:
              0.17748274 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05068286 = queryNorm
              0.15476047 = fieldWeight in 1444, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1444)
      0.33333334 = coord(1/3)
    
    Abstract
    Acquiring knowledge in any field involves information retrieval, i.e. searching the available documents to identify answers to the queries concerning the selected objects. Knowing the keywords which are names of the objects will enable situating the user's query in the information space organized as a thesaurus or faceted classification. Objectives: Identification the areas in the information space which correspond to gaps in the user's personal knowledge or in the domain knowledge might become useful in theory or practice. The aim of this paper is to present a realistic information-space model of a self-authored full-text document on information culture, indexed by the author of this article. Methodology: Having established the relations between the terms, particular modules (sets of terms connected by relations used in facet classification) are situated on a plain, similarly to a communication map. Conclusions drawn from the "journey" on the map, which is a visualization of the knowledge contained in the analysed document, are the crucial part of this paper. Results: The direct result of the research is the created model of information space visualization of a given document (book, article, website). The proposed procedure can practically be used as a new form of representation in order to map the contents of academic books and articles, beside the traditional index form, especially as an e-book auxiliary tool. In teaching, visualization of the information space of a document can be used to help students understand the issues of: classification, categorization and representation of new knowledge emerging in human mind.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  9. Slavic, A.: Interface to classification : some objectives and options (2006) 0.02
    0.018327186 = product of:
      0.054981556 = sum of:
        0.054981556 = product of:
          0.10996311 = sum of:
            0.10996311 = weight(_text_:searching in 2131) [ClassicSimilarity], result of:
              0.10996311 = score(doc=2131,freq=8.0), product of:
                0.20502694 = queryWeight, product of:
                  4.0452914 = idf(docFreq=2103, maxDocs=44218)
                  0.05068286 = queryNorm
                0.53633493 = fieldWeight in 2131, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  4.0452914 = idf(docFreq=2103, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2131)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This is a preprint to be published in the Extensions & Corrections to the UDC. The paper explains the basic functions of browsing and searching that need to be supported in relation to analytico-synthetic classifications such as Universal Decimal Classification (UDC), irrespective of any specific, real-life implementation. UDC is an example of a semi-faceted system that can be used, for instance, for both post-coordinate searching and hierarchical/facet browsing. The advantages of using a classification for IR, however, depend on the strength of the GUI, which should provide a user-friendly interface to classification browsing and searching. The power of this interface is in supporting visualisation that will 'convert' what is potentially a user-unfriendly indexing language based on symbols, to a subject presentation that is easy to understand, search and navigate. A summary of the basic functions of searching and browsing a classification that may be provided on a user-friendly interface is given and examples of classification browsing interfaces are provided.
  10. Hajdu Barát, A.: Usability and the user interfaces of classical information retrieval languages (2006) 0.02
    0.015119157 = product of:
      0.04535747 = sum of:
        0.04535747 = product of:
          0.09071494 = sum of:
            0.09071494 = weight(_text_:searching in 232) [ClassicSimilarity], result of:
              0.09071494 = score(doc=232,freq=4.0), product of:
                0.20502694 = queryWeight, product of:
                  4.0452914 = idf(docFreq=2103, maxDocs=44218)
                  0.05068286 = queryNorm
                0.44245374 = fieldWeight in 232, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0452914 = idf(docFreq=2103, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=232)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper examines some traditional information searching methods and their role in Hungarian OPACs. What challenges are there in the digital and online environment? How do users work with them and do they give users satisfactory results? What kinds of techniques are users employing? In this paper I examine the user interfaces of UDC, thesauri, subject headings etc. in the Hungarian library. The key question of the paper is whether a universal system or local solutions is the best approach for searching in the digital environment.
  11. Wen, B.; Horlings, E.; Zouwen, M. van der; Besselaar, P. van den: Mapping science through bibliometric triangulation : an experimental approach applied to water research (2017) 0.01
    0.014144694 = product of:
      0.04243408 = sum of:
        0.04243408 = weight(_text_:bibliographic in 3437) [ClassicSimilarity], result of:
          0.04243408 = score(doc=3437,freq=2.0), product of:
            0.19731061 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.05068286 = queryNorm
            0.21506234 = fieldWeight in 3437, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3437)
      0.33333334 = coord(1/3)
    
    Abstract
    The idea of constructing science maps based on bibliographic data has intrigued researchers for decades, and various techniques have been developed to map the structure of research disciplines. Most science mapping studies use a single method. However, as research fields have various properties, a valid map of a field should actually be composed of a set of maps derived from a series of investigations using different methods. That leads to the question of what can be learned from a combination-triangulation-of these different science maps. In this paper we propose a method for triangulation, using the example of water science. We combine three different mapping approaches: journal-journal citation relations (JJCR), shared author keywords (SAK), and title word-cited reference co-occurrence (TWRC). Our results demonstrate that triangulation of JJCR, SAK, and TWRC produces a more comprehensive picture than each method applied individually. The outcomes from the three different approaches can be associated with each other and systematically interpreted to provide insights into the complex multidisciplinary structure of the field of water research.
  12. Choi, I.: Visualizations of cross-cultural bibliographic classification : comparative studies of the Korean Decimal Classification and the Dewey Decimal Classification (2017) 0.01
    0.014144694 = product of:
      0.04243408 = sum of:
        0.04243408 = weight(_text_:bibliographic in 3869) [ClassicSimilarity], result of:
          0.04243408 = score(doc=3869,freq=2.0), product of:
            0.19731061 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.05068286 = queryNorm
            0.21506234 = fieldWeight in 3869, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3869)
      0.33333334 = coord(1/3)
    
  13. Yi, K.; Chan, L.M.: ¬A visualization software tool for Library of Congress Subject Headings (2008) 0.01
    0.012959277 = product of:
      0.03887783 = sum of:
        0.03887783 = product of:
          0.07775566 = sum of:
            0.07775566 = weight(_text_:searching in 2503) [ClassicSimilarity], result of:
              0.07775566 = score(doc=2503,freq=4.0), product of:
                0.20502694 = queryWeight, product of:
                  4.0452914 = idf(docFreq=2103, maxDocs=44218)
                  0.05068286 = queryNorm
                0.37924606 = fieldWeight in 2503, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0452914 = idf(docFreq=2103, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2503)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    The aim of this study is to develop a software tool, VisuaLCSH, for effective searching, browsing, and maintenance of LCSH. This tool enables visualizing subject headings and hierarchical structures implied and embedded in LCSH. A conceptual framework for converting the hierarchical structure of headings in LCSH to an explicit tree structure is proposed, described, and implemented. The highlights of VisuaLCSH are summarized below: 1) revealing multiple aspects of a heading; 2) normalizing the hierarchical relationships in LCSH; 3) showing multi-level hierarchies in LCSH sub-trees; 4) improving the navigational function of LCSH in retrieval; and 5) enabling the implementation of generic search, i.e., the 'exploding' feature, in searching LCSH.
  14. Haller, S.H.M.: Mappingverfahren zur Wissensorganisation (2002) 0.01
    0.011444713 = product of:
      0.034334138 = sum of:
        0.034334138 = product of:
          0.068668276 = sum of:
            0.068668276 = weight(_text_:22 in 3406) [ClassicSimilarity], result of:
              0.068668276 = score(doc=3406,freq=2.0), product of:
                0.17748274 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05068286 = queryNorm
                0.38690117 = fieldWeight in 3406, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3406)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    30. 5.2010 16:22:35
  15. Platis, N. et al.: Visualization of uncertainty in tag clouds (2016) 0.01
    0.011444713 = product of:
      0.034334138 = sum of:
        0.034334138 = product of:
          0.068668276 = sum of:
            0.068668276 = weight(_text_:22 in 2755) [ClassicSimilarity], result of:
              0.068668276 = score(doc=2755,freq=2.0), product of:
                0.17748274 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05068286 = queryNorm
                0.38690117 = fieldWeight in 2755, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2755)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    1. 2.2016 18:25:22
  16. Seeliger, F.: ¬A tool for systematic visualization of controlled descriptors and their relation to others as a rich context for a discovery system (2015) 0.01
    0.011315755 = product of:
      0.033947263 = sum of:
        0.033947263 = weight(_text_:bibliographic in 2547) [ClassicSimilarity], result of:
          0.033947263 = score(doc=2547,freq=2.0), product of:
            0.19731061 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.05068286 = queryNorm
            0.17204987 = fieldWeight in 2547, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03125 = fieldNorm(doc=2547)
      0.33333334 = coord(1/3)
    
    Abstract
    The discovery service (a search engine and service called WILBERT) used at our library at the Technical University of Applied Sciences Wildau (TUAS Wildau) is comprised of more than 8 million items. If we were to record all licensed publications in this tool to a higher level of articles, including their bibliographic records and full texts, we would have a holding estimated at a hundred million documents. A lot of features, such as ranking, autocompletion, multi-faceted classification, refining opportunities reduce the number of hits. However, it is not enough to give intuitive support for a systematic overview of topics related to documents in the library. John Naisbitt once said: "We are drowning in information, but starving for knowledge." This quote is still very true today. Two years ago, we started to develop micro thesauri for MINT topics in order to develop an advanced indexing of the library stock. We use iQvoc as a vocabulary management system to create the thesaurus. It provides an easy-to-use browser interface that builds a SKOS thesaurus in the background. The purpose of this is to integrate the thesauri in WILBERT in order to offer a better subject-related search. This approach especially supports first-year students by giving them the possibility to browse through a hierarchical alignment of a subject, for instance, logistics or computer science, and thereby discover how the terms are related. It also supports the students with an insight into established abbreviations and alternative labels. Students at the TUAS Wildau were involved in the developmental process of the software regarding the interface and functionality of iQvoc. The first steps have been taken and involve the inclusion of 3000 terms in our discovery tool WILBERT.
  17. Golub, K.; Ziolkowski, P.M.; Zlodi, G.: Organizing subject access to cultural heritage in Swedish online museums (2022) 0.01
    0.010581206 = product of:
      0.031743616 = sum of:
        0.031743616 = product of:
          0.06348723 = sum of:
            0.06348723 = weight(_text_:searching in 688) [ClassicSimilarity], result of:
              0.06348723 = score(doc=688,freq=6.0), product of:
                0.20502694 = queryWeight, product of:
                  4.0452914 = idf(docFreq=2103, maxDocs=44218)
                  0.05068286 = queryNorm
                0.30965313 = fieldWeight in 688, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.0452914 = idf(docFreq=2103, maxDocs=44218)
                  0.03125 = fieldNorm(doc=688)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose The study aims to paint a representative picture of the current state of search interfaces of Swedish online museum collections, focussing on search functionalities with particular reference to subject searching, as well as the use of controlled vocabularies, with the purpose of identifying which improvements of the search interfaces are needed to ensure high-quality information retrieval for the end user. Design/methodology/approach In the first step, a set of 21 search interface criteria was identified, based on related research and current standards in the domain of cultural heritage knowledge organization. Secondly, a complete set of Swedish museums that provide online access to their collections was identified, comprising nine cross-search services and 91 individual museums' websites. These 100 websites were each evaluated against the 21 criteria, between 1 July and 31 August 2020. Findings Although many standards and guidelines are in place to ensure quality-controlled subject indexing, which in turn support information retrieval of relevant resources (as individual or full search results), the study shows that they are not broadly implemented, resulting in information retrieval failures for the end user. The study also demonstrates a strong need for the implementation of controlled vocabularies in these museums. Originality/value This study is a rare piece of research which examines subject searching in online museums; the 21 search criteria and their use in the analysis of the complete set of online collections of a country represents a considerable and unique contribution to the fields of knowledge organization and information retrieval of cultural heritage. Its particular value lies in showing how the needs of end users, many of which are documented and reflected in international standards and guidelines, should be taken into account in designing search tools for these museums; especially so in subject searching, which is the most complex and yet the most common type of search. Much effort has been invested into digitizing cultural heritage collections, but access to them is hindered by poor search functionality. This study identifies which are the most important aspects to improve.
  18. Börner, K.; Chen, C.; Boyack, K.W.: Visualizing knowledge domains (2002) 0.01
    0.009901285 = product of:
      0.029703856 = sum of:
        0.029703856 = weight(_text_:bibliographic in 4286) [ClassicSimilarity], result of:
          0.029703856 = score(doc=4286,freq=2.0), product of:
            0.19731061 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.05068286 = queryNorm
            0.15054363 = fieldWeight in 4286, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4286)
      0.33333334 = coord(1/3)
    
    Abstract
    This chapter reviews visualization techniques that can be used to map the ever-growing domain structure of scientific disciplines and to support information retrieval and classification. In contrast to the comprehensive surveys conducted in traditional fashion by Howard White and Katherine McCain (1997, 1998), this survey not only reviews emerging techniques in interactive data analysis and information visualization, but also depicts the bibliographical structure of the field itself. The chapter starts by reviewing the history of knowledge domain visualization. We then present a general process flow for the visualization of knowledge domains and explain commonly used techniques. In order to visualize the domain reviewed by this chapter, we introduce a bibliographic data set of considerable size, which includes articles from the citation analysis, bibliometrics, semantics, and visualization literatures. Using tutorial style, we then apply various algorithms to demonstrate the visualization effectsl produced by different approaches and compare the results. The domain visualizations reveal the relationships within and between the four fields that together constitute the focus of this chapter. We conclude with a general discussion of research possibilities. Painting a "big picture" of scientific knowledge has long been desirable for a variety of reasons. Traditional approaches are brute forcescholars must sort through mountains of literature to perceive the outlines of their field. Obviously, this is time-consuming, difficult to replicate, and entails subjective judgments. The task is enormously complex. Sifting through recently published documents to find those that will later be recognized as important is labor intensive. Traditional approaches struggle to keep up with the pace of information growth. In multidisciplinary fields of study it is especially difficult to maintain an overview of literature dynamics. Painting the big picture of an everevolving scientific discipline is akin to the situation described in the widely known Indian legend about the blind men and the elephant. As the story goes, six blind men were trying to find out what an elephant looked like. They touched different parts of the elephant and quickly jumped to their conclusions. The one touching the body said it must be like a wall; the one touching the tail said it was like a snake; the one touching the legs said it was like a tree trunk, and so forth. But science does not stand still; the steady stream of new scientific literature creates a continuously changing structure. The resulting disappearance, fusion, and emergence of research areas add another twist to the tale-it is as if the elephant is running and dynamically changing its shape. Domain visualization, an emerging field of study, is in a similar situation. Relevant literature is spread across disciplines that have traditionally had few connections. Researchers examining the domain from a particular discipline cannot possibly have an adequate understanding of the whole. As noted by White and McCain (1997), the new generation of information scientists is technically driven in its efforts to visualize scientific disciplines. However, limited progress has been made in terms of connecting pioneers' theories and practices with the potentialities of today's enabling technologies. If the difference between past and present generations lies in the power of available technologies, what they have in common is the ultimate goal-to reveal the development of scientific knowledge.
  19. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.01
    0.009711162 = product of:
      0.029133486 = sum of:
        0.029133486 = product of:
          0.05826697 = sum of:
            0.05826697 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.05826697 = score(doc=3355,freq=4.0), product of:
                0.17748274 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05068286 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  20. Koshman, S.: Comparing usability between a visualization and text-based system for information retrieval (2004) 0.01
    0.009163593 = product of:
      0.027490778 = sum of:
        0.027490778 = product of:
          0.054981556 = sum of:
            0.054981556 = weight(_text_:searching in 4424) [ClassicSimilarity], result of:
              0.054981556 = score(doc=4424,freq=2.0), product of:
                0.20502694 = queryWeight, product of:
                  4.0452914 = idf(docFreq=2103, maxDocs=44218)
                  0.05068286 = queryNorm
                0.26816747 = fieldWeight in 4424, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0452914 = idf(docFreq=2103, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4424)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This investigation tested the designer assumption that VIBE is a tool for an expert user and asked: what are the effects of user expertise on usability when VIBE's non-traditional interface is compared with a more traditional text-based interface? Three user groups - novices, online searching experts, and VIBE system experts - totaling 31 participants, were asked to use and compare VIBE to a more traditional text-based system, askSam. No significant differences were found; however, significant performance differences were found for some tasks on the two systems. Participants understood the basic principles underlying VIBE although they generally favored the askSam system. The findings suggest that VIBE is a learnable system and its components have pragmatic application to the development of visualized information retrieval systems. Further research is recommended to maximize the retrieval potential of IR visualization systems.

Years

Languages

  • e 35
  • d 4
  • a 1
  • More… Less…

Types

  • a 31
  • el 8
  • m 5
  • x 2
  • p 1
  • s 1
  • More… Less…