Search (12 results, page 1 of 1)

  • × author_ss:"Broughton, V."
  1. Broughton, V.: Facet analysis as a fundamental theory for structuring subject organization tools (2007) 0.01
    0.014092816 = product of:
      0.042278446 = sum of:
        0.042278446 = product of:
          0.08455689 = sum of:
            0.08455689 = weight(_text_:methodology in 537) [ClassicSimilarity], result of:
              0.08455689 = score(doc=537,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.3981634 = fieldWeight in 537, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.0625 = fieldNorm(doc=537)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The presentation will examine the potential of facet analysis as a basis for determining status and relationships of concepts in subject based tools using a controlled vocabulary, and the extent to which it can be used as a general theory of knowledge organization as opposed to a methodology for structuring classifications only.
  2. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.01
    0.012774572 = product of:
      0.038323715 = sum of:
        0.038323715 = product of:
          0.07664743 = sum of:
            0.07664743 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.07664743 = score(doc=6048,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 9.2007 15:41:14
  3. Broughton, V.: Facet analysis as a tool for modelling subject domains and terminologies (2011) 0.01
    0.012456408 = product of:
      0.03736922 = sum of:
        0.03736922 = product of:
          0.07473844 = sum of:
            0.07473844 = weight(_text_:methodology in 4826) [ClassicSimilarity], result of:
              0.07473844 = score(doc=4826,freq=4.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.35193008 = fieldWeight in 4826, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4826)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Facet analysis is proposed as a general theory of knowledge organization, with an associated methodology that may be applied to the development of terminology tools in a variety of contexts and formats. Faceted classifications originated as a means of representing complexity in semantic content that facilitates logical organization and effective retrieval in a physical environment. This is achieved through meticulous analysis of concepts, their structural and functional status (based on fundamental categories), and their inter-relationships. These features provide an excellent basis for the general conceptual modelling of domains, and for the generation of KOS other than systematic classifications. This is demonstrated by the adoption of a faceted approach to many web search and visualization tools, and by the emergence of a facet based methodology for the construction of thesauri. Current work on the Bliss Bibliographic Classification (Second Edition) is investigating the ways in which the full complexity of faceted structures may be represented through encoded data, capable of generating intellectually and mechanically compatible forms of indexing tools from a single source. It is suggested that a number of research questions relating to the Semantic Web could be tackled through the medium of facet analysis.
  4. Broughton, V.: ¬The need for a faceted classification as the basis of all methods of information retrieval (2006) 0.01
    0.012456408 = product of:
      0.03736922 = sum of:
        0.03736922 = product of:
          0.07473844 = sum of:
            0.07473844 = weight(_text_:methodology in 2874) [ClassicSimilarity], result of:
              0.07473844 = score(doc=2874,freq=4.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.35193008 = fieldWeight in 2874, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2874)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The aim of this article is to estimate the impact of faceted classification and the faceted analytical method on the development of various information retrieval tools over the latter part of the twentieth and early twenty-first centuries. Design/methodology/approach - The article presents an examination of various subject access tools intended for retrieval of both print and digital materials to determine whether they exhibit features of faceted systems. Some attention is paid to use of the faceted approach as a means of structuring information on commercial web sites. The secondary and research literature is also surveyed for commentary on and evaluation of facet analysis as a basis for the building of vocabulary and conceptual tools. Findings - The study finds that faceted systems are now very common, with a major increase in their use over the last 15 years. Most LIS subject indexing tools (classifications, subject heading lists and thesauri) now demonstrate features of facet analysis to a greater or lesser degree. A faceted approach is frequently taken to the presentation of product information on commercial web sites, and there is an independent strand of theory and documentation related to this application. There is some significant research on semi-automatic indexing and retrieval (query expansion and query formulation) using facet analytical techniques. Originality/value - This article provides an overview of an important conceptual approach to information retrieval, and compares different understandings and applications of this methodology.
  5. Broughton, V.; Slavic, A.: Building a faceted classification for the humanities : principles and procedures (2007) 0.01
    0.012204738 = product of:
      0.036614213 = sum of:
        0.036614213 = product of:
          0.07322843 = sum of:
            0.07322843 = weight(_text_:methodology in 2875) [ClassicSimilarity], result of:
              0.07322843 = score(doc=2875,freq=6.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.34481966 = fieldWeight in 2875, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2875)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - This paper aims to provide an overview of principles and procedures involved in creating a faceted classification scheme for use in resource discovery in an online environment. Design/methodology/approach - Facet analysis provides an established rigorous methodology for the conceptual organization of a subject field, and the structuring of an associated classification or controlled vocabulary. This paper explains how that methodology was applied to the humanities in the FATKS project, where the objective was to explore the potential of facet analytical theory for creating a controlled vocabulary for the humanities, and to establish the requirements of a faceted classification appropriate to an online environment. A detailed faceted vocabulary was developed for two areas of the humanities within a broader facet framework for the whole of knowledge. Research issues included how to create a data model which made the faceted structure explicit and machine-readable and provided for its further development and use. Findings - In order to support easy facet combination in indexing, and facet searching and browsing on the interface, faceted classification requires a formalized data structure and an appropriate tool for its management. The conceptual framework of a faceted system proper can be applied satisfactorily to humanities, and fully integrated within a vocabulary management system. Research limitations/implications - The procedures described in this paper are concerned only with the structuring of the classification, and do not extend to indexing, retrieval and application issues. Practical implications - Many stakeholders in the domain of resource discovery consider developing their own classification system and supporting tools. The methods described in this paper may clarify the process of building a faceted classification and may provide some useful ideas with respect to the vocabulary maintenance tool. Originality/value - As far as the authors are aware there is no comparable research in this area.
  6. Broughton, V.: ¬A faceted classification as the basis of a faceted terminology : conversion of a classified structure to thesaurus format in the Bliss Bibliographic Classification, 2nd Edition (2008) 0.01
    0.010569612 = product of:
      0.031708833 = sum of:
        0.031708833 = product of:
          0.063417666 = sum of:
            0.063417666 = weight(_text_:methodology in 1857) [ClassicSimilarity], result of:
              0.063417666 = score(doc=1857,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.29862255 = fieldWeight in 1857, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1857)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Facet analysis is an established methodology for building classifications and subject indexing systems, but has been less rigorously applied to thesauri. The process of creating a compatible thesaurus from the schedules of the Bliss Bibliographic Classification 2nd edition highlights the ways in which the conceptual relationships in a subject field are handled in the two types of retrieval languages. An underlying uniformity of theory is established, and the way in which software can manage the relationships is discussed. The manner of displaying verbal expressions of concepts (vocabulary control) is also considered, but is found to be less well controlled in the classification than in the thesaurus. Nevertheless, there is good reason to think that facet analysis provides a sound basis for structuring a variety of knowledge organization tools.
  7. Broughton, V.: Faceted classification in support of diversity : the role of concepts and terms in representing religion (2020) 0.01
    0.010569612 = product of:
      0.031708833 = sum of:
        0.031708833 = product of:
          0.063417666 = sum of:
            0.063417666 = weight(_text_:methodology in 5992) [ClassicSimilarity], result of:
              0.063417666 = score(doc=5992,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.29862255 = fieldWeight in 5992, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5992)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The paper examines the development of facet analysis as a methodology and the role it plays in building classifications and other knowledge-organization tools. The use of categorical analysis in areas other than library and information science is also considered. The suitability of the faceted approach for humanities documentation is explored through a critical description of the FATKS (Facet Analytical Theory in Managing Knowledge Structure for Humanities) project carried out at University College London. This research focused on building a conceptual model for the subject of religion together with a relational database and search-and-browse interfaces that would support some degree of automatic classification. The paper concludes with a discussion of the differences between the conceptual model and the vocabulary used to populate it, and how, in the case of religion, the choice of terminology can create an apparent bias in the system.
  8. Broughton, V.: ¬The fall and rise of knowledge organization : new dimensions of subject description and retrieval (2010) 0.01
    0.00880801 = product of:
      0.02642403 = sum of:
        0.02642403 = product of:
          0.05284806 = sum of:
            0.05284806 = weight(_text_:methodology in 3940) [ClassicSimilarity], result of:
              0.05284806 = score(doc=3940,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.24885213 = fieldWeight in 3940, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3940)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The purpose of this editorial is to introduce the selected Proceedings of the 1st National Conference of ISKO UK, the UK Chapter of the International Society for Knowledge Organization. It aims to provide some background for the group, and place it within the context of the recent history of information organization and retrieval in subject domains. Design/methodology/approach - The paper introduces a selection of papers delivered at the 1st National Conference of the UK Chapter of the International Society for Knowledge Organization. Findings - The field of knowledge organization is lively and progressive, and researchers and practitioners in many sectors are actively engaged with it, despite its apparent decline in LIS education. New communities of interest may use different terms to describe this work, but there is much common ground, and a growing convergence of ideas and methods. Originality/value - The value of existing theory is now more widely recognised, and the importance of structured knowledge organization systems and vocabularies in retrieval is generally acknowledged. It is to be hoped that these important areas of information practice and research will soon be restored to their former place in professional education.
  9. Broughton, V.: Science and knowledge organization : an editorial (2021) 0.01
    0.00880801 = product of:
      0.02642403 = sum of:
        0.02642403 = product of:
          0.05284806 = sum of:
            0.05284806 = weight(_text_:methodology in 593) [ClassicSimilarity], result of:
              0.05284806 = score(doc=593,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.24885213 = fieldWeight in 593, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=593)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The purpose of this article is to identify the most important factors and features in the evolution of thesauri and ontologies through a dialectic model. This model relies on a dialectic process or idea which could be discovered via a dialectic method. This method has focused on identifying the logical relationship between a beginning proposition, or an idea called a thesis, a negation of that idea called the antithesis, and the result of the conflict between the two ideas, called a synthesis. During the creation of knowl­edge organization systems (KOSs), the identification of logical relations between different ideas has been made possible through the consideration and use of the most influential methods and tools such as dictionaries, Roget's Thesaurus, thesaurus, micro-, macro- and metathesauri, ontology, lower, middle and upper level ontologies. The analysis process has adapted a historical methodology, more specifically a dialectic method and documentary method as the reasoning process. This supports our arguments and synthesizes a method for the analysis of research results. Confirmed by the research results, the principle of unity has shown to be the most important factor in the development and evolution of the structure of knowl­edge organization systems and their types. There are various types of unity when considering the analysis of logical relations. These include the principle of unity of alphabetical order, unity of science, semantic unity, structural unity and conceptual unity. The results have clearly demonstrated a movement from plurality to unity in the assembling of the complex structure of knowl­edge organization systems to increase information and knowl­edge storage and retrieval performance.
  10. Broughton, V.: Henry Evelyn Bliss : the other immortal or a prophet without honour? (2008) 0.01
    0.0074518337 = product of:
      0.0223555 = sum of:
        0.0223555 = product of:
          0.044711 = sum of:
            0.044711 = weight(_text_:22 in 2550) [ClassicSimilarity], result of:
              0.044711 = score(doc=2550,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.2708308 = fieldWeight in 2550, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2550)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    9. 2.1997 18:44:22
  11. Broughton, V.: Notational expressivity : the case for and against the representation of internal subject structure in notational coding (1999) 0.01
    0.006387286 = product of:
      0.019161858 = sum of:
        0.019161858 = product of:
          0.038323715 = sum of:
            0.038323715 = weight(_text_:22 in 6392) [ClassicSimilarity], result of:
              0.038323715 = score(doc=6392,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.23214069 = fieldWeight in 6392, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6392)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    10. 8.2001 13:22:14
  12. Broughton, V.: Essential thesaurus construction (2006) 0.00
    0.003523204 = product of:
      0.010569612 = sum of:
        0.010569612 = product of:
          0.021139223 = sum of:
            0.021139223 = weight(_text_:methodology in 2924) [ClassicSimilarity], result of:
              0.021139223 = score(doc=2924,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.09954085 = fieldWeight in 2924, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2924)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Many information professionals working in small units today fail to find the published tools for subject-based organization that are appropriate to their local needs, whether they are archivists, special librarians, information officers, or knowledge or content managers. Large established standards for document description and organization are too unwieldy, unnecessarily detailed, or too expensive to install and maintain. In other cases the available systems are insufficient for a specialist environment, or don't bring things together in a helpful way. A purpose built, in-house system would seem to be the answer, but too often the skills necessary to create one are lacking. This practical text examines the criteria relevant to the selection of a subject-management system, describes the characteristics of some common types of subject tool, and takes the novice step by step through the process of creating a system for a specialist environment. The methodology employed is a standard technique for the building of a thesaurus that incidentally creates a compatible classification or taxonomy, both of which may be used in a variety of ways for document or information management. Key areas covered are: What is a thesaurus? Tools for subject access and retrieval; what a thesaurus is used for? Why use a thesaurus? Examples of thesauri; the structure of a thesaurus; thesaural relationships; practical thesaurus construction; the vocabulary of the thesaurus; building the systematic structure; conversion to alphabetic format; forms of entry in the thesaurus; maintaining the thesaurus; thesaurus software; and; the wider environment. Essential for the practising information professional, this guide is also valuable for students of library and information science.