Search (28 results, page 1 of 2)

  • × theme_ss:"Automatisches Klassifizieren"
  1. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.32
    0.318667 = sum of:
      0.074876286 = product of:
        0.22462885 = sum of:
          0.22462885 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
            0.22462885 = score(doc=562,freq=2.0), product of:
              0.39968264 = queryWeight, product of:
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.047143444 = queryNorm
              0.56201804 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
        0.33333334 = coord(1/3)
      0.22462885 = weight(_text_:2f in 562) [ClassicSimilarity], result of:
        0.22462885 = score(doc=562,freq=2.0), product of:
          0.39968264 = queryWeight, product of:
            8.478011 = idf(docFreq=24, maxDocs=44218)
            0.047143444 = queryNorm
          0.56201804 = fieldWeight in 562, product of:
            1.4142135 = tf(freq=2.0), with freq of:
              2.0 = termFreq=2.0
            8.478011 = idf(docFreq=24, maxDocs=44218)
            0.046875 = fieldNorm(doc=562)
      0.019161858 = product of:
        0.038323715 = sum of:
          0.038323715 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
            0.038323715 = score(doc=562,freq=2.0), product of:
              0.16508831 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047143444 = queryNorm
              0.23214069 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
        0.5 = coord(1/2)
    
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
  2. Savic, D.: Designing an expert system for classifying office documents (1994) 0.01
    0.014092816 = product of:
      0.042278446 = sum of:
        0.042278446 = product of:
          0.08455689 = sum of:
            0.08455689 = weight(_text_:methodology in 2655) [ClassicSimilarity], result of:
              0.08455689 = score(doc=2655,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.3981634 = fieldWeight in 2655, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2655)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Can records management benefit from artificial intelligence technology, in particular from expert systems? Gives an answer to this question by showing an example of a small scale prototype project in automatic classification of office documents. Project methodology and basic elements of an expert system's approach are elaborated to give guidelines to potential users of this promising technology
  3. Ingwersen, P.; Wormell, I.: Ranganathan in the perspective of advanced information retrieval (1992) 0.01
    0.014092816 = product of:
      0.042278446 = sum of:
        0.042278446 = product of:
          0.08455689 = sum of:
            0.08455689 = weight(_text_:methodology in 7695) [ClassicSimilarity], result of:
              0.08455689 = score(doc=7695,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.3981634 = fieldWeight in 7695, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7695)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Examnines Ranganathan's approach to knowledge organisation and its relevance to intellectual accessibility in libraries. Discusses the current and future developments of his methodology and theories in knowledge-based systems. Topics covered include: semi-automatic classification and structure of thesauri; user-intermediary interactions in information retrieval (IR); semantic value-theory and uncertainty principles in IR; and case grammar
  4. Subramanian, S.; Shafer, K.E.: Clustering (2001) 0.01
    0.012774572 = product of:
      0.038323715 = sum of:
        0.038323715 = product of:
          0.07664743 = sum of:
            0.07664743 = weight(_text_:22 in 1046) [ClassicSimilarity], result of:
              0.07664743 = score(doc=1046,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.46428138 = fieldWeight in 1046, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1046)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    5. 5.2003 14:17:22
  5. Golub, K.; Lykke, M.: Automated classification of web pages in hierarchical browsing (2009) 0.01
    0.012456408 = product of:
      0.03736922 = sum of:
        0.03736922 = product of:
          0.07473844 = sum of:
            0.07473844 = weight(_text_:methodology in 3614) [ClassicSimilarity], result of:
              0.07473844 = score(doc=3614,freq=4.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.35193008 = fieldWeight in 3614, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3614)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The purpose of this study is twofold: to investigate whether it is meaningful to use the Engineering Index (Ei) classification scheme for browsing, and then, if proven useful, to investigate the performance of an automated classification algorithm based on the Ei classification scheme. Design/methodology/approach - A user study was conducted in which users solved four controlled searching tasks. The users browsed the Ei classification scheme in order to examine the suitability of the classification systems for browsing. The classification algorithm was evaluated by the users who judged the correctness of the automatically assigned classes. Findings - The study showed that the Ei classification scheme is suited for browsing. Automatically assigned classes were on average partly correct, with some classes working better than others. Success of browsing showed to be correlated and dependent on classification correctness. Research limitations/implications - Further research should address problems of disparate evaluations of one and the same web page. Additional reasons behind browsing failures in the Ei classification scheme also need further investigation. Practical implications - Improvements for browsing were identified: describing class captions and/or listing their subclasses from start; allowing for searching for words from class captions with synonym search (easily provided for Ei since the classes are mapped to thesauri terms); when searching for class captions, returning the hierarchical tree expanded around the class in which caption the search term is found. The need for improvements of classification schemes was also indicated. Originality/value - A user-based evaluation of automated subject classification in the context of browsing has not been conducted before; hence the study also presents new findings concerning methodology.
  6. Savic, D.: Automatic classification of office documents : review of available methods and techniques (1995) 0.01
    0.012331214 = product of:
      0.03699364 = sum of:
        0.03699364 = product of:
          0.07398728 = sum of:
            0.07398728 = weight(_text_:methodology in 2219) [ClassicSimilarity], result of:
              0.07398728 = score(doc=2219,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.348393 = fieldWeight in 2219, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2219)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Classification of office documents is one of the administrative functions carried out by almost every organization and institution which sends and receives correspondence. Processing of this increasing amount of information coming and out going mail, in particular its classification, is time consuming and expensive. More and more organizations are seeking a solution for meeting this challenge by designing computer based systems for automatic classification. Examines the present status of available knowledge and methodology which can be used for automatic classification of office documents. Besides a review of classic methods and techniques, the focus id also placed on the application of artificial intelligence
  7. Reiner, U.: Automatische DDC-Klassifizierung von bibliografischen Titeldatensätzen (2009) 0.01
    0.010645477 = product of:
      0.03193643 = sum of:
        0.03193643 = product of:
          0.06387286 = sum of:
            0.06387286 = weight(_text_:22 in 611) [ClassicSimilarity], result of:
              0.06387286 = score(doc=611,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.38690117 = fieldWeight in 611, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=611)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 8.2009 12:54:24
  8. HaCohen-Kerner, Y. et al.: Classification using various machine learning methods and combinations of key-phrases and visual features (2016) 0.01
    0.010645477 = product of:
      0.03193643 = sum of:
        0.03193643 = product of:
          0.06387286 = sum of:
            0.06387286 = weight(_text_:22 in 2748) [ClassicSimilarity], result of:
              0.06387286 = score(doc=2748,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.38690117 = fieldWeight in 2748, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2748)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    1. 2.2016 18:25:22
  9. Cosh, K.J.; Burns, R.; Daniel, T.: Content clouds : classifying content in Web 2.0 (2008) 0.01
    0.010569612 = product of:
      0.031708833 = sum of:
        0.031708833 = product of:
          0.063417666 = sum of:
            0.063417666 = weight(_text_:methodology in 2013) [ClassicSimilarity], result of:
              0.063417666 = score(doc=2013,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.29862255 = fieldWeight in 2013, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2013)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - With increasing amounts of user generated content being produced electronically in the form of wikis, blogs, forums etc. the purpose of this paper is to investigate a new approach to classifying ad hoc content. Design/methodology/approach - The approach applies natural language processing (NLP) tools to automatically extract the content of some text, visualizing the results in a content cloud. Findings - Content clouds share the visual simplicity of a tag cloud, but display the details of an article at a different level of abstraction, providing a complimentary classification. Research limitations/implications - Provides the general approach to creating a content cloud. In the future, the process can be refined and enhanced by further evaluation of results. Further work is also required to better identify closely related articles. Practical implications - Being able to automatically classify the content generated by web users will enable others to find more appropriate content. Originality/value - The approach is original. Other researchers have produced a cloud, simply by using skiplists to filter unwanted words, this paper's approach improves this by applying appropriate NLP techniques.
  10. Ozmutlu, S.; Cosar, G.C.: Analyzing the results of automatic new topic identification (2008) 0.01
    0.010569612 = product of:
      0.031708833 = sum of:
        0.031708833 = product of:
          0.063417666 = sum of:
            0.063417666 = weight(_text_:methodology in 2604) [ClassicSimilarity], result of:
              0.063417666 = score(doc=2604,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.29862255 = fieldWeight in 2604, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2604)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - Identification of topic changes within a user search session is a key issue in content analysis of search engine user queries. Recently, various studies have focused on new topic identification/session identification of search engine transaction logs, and several problems regarding the estimation of topic shifts and continuations were observed in these studies. This study aims to analyze the reasons for the problems that were encountered as a result of applying automatic new topic identification. Design/methodology/approach - Measures, such as cleaning the data of common words and analyzing the errors of automatic new topic identification, are applied to eliminate the problems in estimating topic shifts and continuations. Findings - The findings show that the resulting errors of automatic new topic identification have a pattern, and further research is required to improve the performance of automatic new topic identification. Originality/value - Improving the performance of automatic new topic identification would be valuable to search engine designers, so that they can develop new clustering and query recommendation algorithms, as well as custom-tailored graphical user interfaces for search engine users.
  11. Kragelj, M.; Borstnar, M.K.: Automatic classification of older electronic texts into the Universal Decimal Classification-UDC (2021) 0.01
    0.009965126 = product of:
      0.029895378 = sum of:
        0.029895378 = product of:
          0.059790757 = sum of:
            0.059790757 = weight(_text_:methodology in 175) [ClassicSimilarity], result of:
              0.059790757 = score(doc=175,freq=4.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.28154406 = fieldWeight in 175, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.03125 = fieldNorm(doc=175)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose The purpose of this study is to develop a model for automated classification of old digitised texts to the Universal Decimal Classification (UDC), using machine-learning methods. Design/methodology/approach The general research approach is inherent to design science research, in which the problem of UDC assignment of the old, digitised texts is addressed by developing a machine-learning classification model. A corpus of 70,000 scholarly texts, fully bibliographically processed by librarians, was used to train and test the model, which was used for classification of old texts on a corpus of 200,000 items. Human experts evaluated the performance of the model. Findings Results suggest that machine-learning models can correctly assign the UDC at some level for almost any scholarly text. Furthermore, the model can be recommended for the UDC assignment of older texts. Ten librarians corroborated this on 150 randomly selected texts. Research limitations/implications The main limitations of this study were unavailability of labelled older texts and the limited availability of librarians. Practical implications The classification model can provide a recommendation to the librarians during their classification work; furthermore, it can be implemented as an add-on to full-text search in the library databases. Social implications The proposed methodology supports librarians by recommending UDC classifiers, thus saving time in their daily work. By automatically classifying older texts, digital libraries can provide a better user experience by enabling structured searches. These contribute to making knowledge more widely available and useable. Originality/value These findings contribute to the field of automated classification of bibliographical information with the usage of full texts, especially in cases in which the texts are old, unstructured and in which archaic language and vocabulary are used.
  12. Golub, K.: Automated subject classification of textual web documents (2006) 0.01
    0.00880801 = product of:
      0.02642403 = sum of:
        0.02642403 = product of:
          0.05284806 = sum of:
            0.05284806 = weight(_text_:methodology in 5600) [ClassicSimilarity], result of:
              0.05284806 = score(doc=5600,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.24885213 = fieldWeight in 5600, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5600)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - To provide an integrated perspective to similarities and differences between approaches to automated classification in different research communities (machine learning, information retrieval and library science), and point to problems with the approaches and automated classification as such. Design/methodology/approach - A range of works dealing with automated classification of full-text web documents are discussed. Explorations of individual approaches are given in the following sections: special features (description, differences, evaluation), application and characteristics of web pages. Findings - Provides major similarities and differences between the three approaches: document pre-processing and utilization of web-specific document characteristics is common to all the approaches; major differences are in applied algorithms, employment or not of the vector space model and of controlled vocabularies. Problems of automated classification are recognized. Research limitations/implications - The paper does not attempt to provide an exhaustive bibliography of related resources. Practical implications - As an integrated overview of approaches from different research communities with application examples, it is very useful for students in library and information science and computer science, as well as for practitioners. Researchers from one community have the information on how similar tasks are conducted in different communities. Originality/value - To the author's knowledge, no review paper on automated text classification attempted to discuss more than one community's approach from an integrated perspective.
  13. Peng, F.; Huang, X.: Machine learning for Asian language text classification (2007) 0.01
    0.00880801 = product of:
      0.02642403 = sum of:
        0.02642403 = product of:
          0.05284806 = sum of:
            0.05284806 = weight(_text_:methodology in 831) [ClassicSimilarity], result of:
              0.05284806 = score(doc=831,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.24885213 = fieldWeight in 831, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=831)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The purpose of this research is to compare several machine learning techniques on the task of Asian language text classification, such as Chinese and Japanese where no word boundary information is available in written text. The paper advocates a simple language modeling based approach for this task. Design/methodology/approach - Naïve Bayes, maximum entropy model, support vector machines, and language modeling approaches were implemented and were applied to Chinese and Japanese text classification. To investigate the influence of word segmentation, different word segmentation approaches were investigated and applied to Chinese text. A segmentation-based approach was compared with the non-segmentation-based approach. Findings - There were two findings: the experiments show that statistical language modeling can significantly outperform standard techniques, given the same set of features; and it was found that classification with word level features normally yields improved classification performance, but that classification performance is not monotonically related to segmentation accuracy. In particular, classification performance may initially improve with increased segmentation accuracy, but eventually classification performance stops improving, and can in fact even decrease, after a certain level of segmentation accuracy. Practical implications - Apply the findings to real web text classification is ongoing work. Originality/value - The paper is very relevant to Chinese and Japanese information processing, e.g. webpage classification, web search.
  14. Bock, H.-H.: Datenanalyse zur Strukturierung und Ordnung von Information (1989) 0.01
    0.0074518337 = product of:
      0.0223555 = sum of:
        0.0223555 = product of:
          0.044711 = sum of:
            0.044711 = weight(_text_:22 in 141) [ClassicSimilarity], result of:
              0.044711 = score(doc=141,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.2708308 = fieldWeight in 141, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=141)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Pages
    S.1-22
  15. Dubin, D.: Dimensions and discriminability (1998) 0.01
    0.0074518337 = product of:
      0.0223555 = sum of:
        0.0223555 = product of:
          0.044711 = sum of:
            0.044711 = weight(_text_:22 in 2338) [ClassicSimilarity], result of:
              0.044711 = score(doc=2338,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.2708308 = fieldWeight in 2338, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2338)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 9.1997 19:16:05
  16. Automatic classification research at OCLC (2002) 0.01
    0.0074518337 = product of:
      0.0223555 = sum of:
        0.0223555 = product of:
          0.044711 = sum of:
            0.044711 = weight(_text_:22 in 1563) [ClassicSimilarity], result of:
              0.044711 = score(doc=1563,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.2708308 = fieldWeight in 1563, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1563)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    5. 5.2003 9:22:09
  17. Jenkins, C.: Automatic classification of Web resources using Java and Dewey Decimal Classification (1998) 0.01
    0.0074518337 = product of:
      0.0223555 = sum of:
        0.0223555 = product of:
          0.044711 = sum of:
            0.044711 = weight(_text_:22 in 1673) [ClassicSimilarity], result of:
              0.044711 = score(doc=1673,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.2708308 = fieldWeight in 1673, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1673)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    1. 8.1996 22:08:06
  18. Yoon, Y.; Lee, C.; Lee, G.G.: ¬An effective procedure for constructing a hierarchical text classification system (2006) 0.01
    0.0074518337 = product of:
      0.0223555 = sum of:
        0.0223555 = product of:
          0.044711 = sum of:
            0.044711 = weight(_text_:22 in 5273) [ClassicSimilarity], result of:
              0.044711 = score(doc=5273,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.2708308 = fieldWeight in 5273, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5273)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 7.2006 16:24:52
  19. Yi, K.: Automatic text classification using library classification schemes : trends, issues and challenges (2007) 0.01
    0.0074518337 = product of:
      0.0223555 = sum of:
        0.0223555 = product of:
          0.044711 = sum of:
            0.044711 = weight(_text_:22 in 2560) [ClassicSimilarity], result of:
              0.044711 = score(doc=2560,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.2708308 = fieldWeight in 2560, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2560)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 9.2008 18:31:54
  20. Liu, R.-L.: Context recognition for hierarchical text classification (2009) 0.01
    0.006387286 = product of:
      0.019161858 = sum of:
        0.019161858 = product of:
          0.038323715 = sum of:
            0.038323715 = weight(_text_:22 in 2760) [ClassicSimilarity], result of:
              0.038323715 = score(doc=2760,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.23214069 = fieldWeight in 2760, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2760)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 3.2009 19:11:54