Search (14 results, page 1 of 1)

  • × theme_ss:"Theorie verbaler Dokumentationssprachen"
  1. Jia, J.: From data to knowledge : the relationships between vocabularies, linked data and knowledge graphs (2021) 0.03
    0.028261498 = product of:
      0.08478449 = sum of:
        0.08478449 = sum of:
          0.05284806 = weight(_text_:methodology in 106) [ClassicSimilarity], result of:
            0.05284806 = score(doc=106,freq=2.0), product of:
              0.21236731 = queryWeight, product of:
                4.504705 = idf(docFreq=1328, maxDocs=44218)
                0.047143444 = queryNorm
              0.24885213 = fieldWeight in 106, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.504705 = idf(docFreq=1328, maxDocs=44218)
                0.0390625 = fieldNorm(doc=106)
          0.03193643 = weight(_text_:22 in 106) [ClassicSimilarity], result of:
            0.03193643 = score(doc=106,freq=2.0), product of:
              0.16508831 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047143444 = queryNorm
              0.19345059 = fieldWeight in 106, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=106)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose The purpose of this paper is to identify the concepts, component parts and relationships between vocabularies, linked data and knowledge graphs (KGs) from the perspectives of data and knowledge transitions. Design/methodology/approach This paper uses conceptual analysis methods. This study focuses on distinguishing concepts and analyzing composition and intercorrelations to explore data and knowledge transitions. Findings Vocabularies are the cornerstone for accurately building understanding of the meaning of data. Vocabularies provide for a data-sharing model and play an important role in supporting the semantic expression of linked data and defining the schema layer; they are also used for entity recognition, alignment and linkage for KGs. KGs, which consist of a schema layer and a data layer, are presented as cubes that organically combine vocabularies, linked data and big data. Originality/value This paper first describes the composition of vocabularies, linked data and KGs. More importantly, this paper innovatively analyzes and summarizes the interrelatedness of these factors, which comes from frequent interactions between data and knowledge. The three factors empower each other and can ultimately empower the Semantic Web.
    Date
    22. 1.2021 14:24:32
  2. Ruge, G.: ¬A spreading activation network for automatic generation of thesaurus relationships (1991) 0.01
    0.014903667 = product of:
      0.044711 = sum of:
        0.044711 = product of:
          0.089422 = sum of:
            0.089422 = weight(_text_:22 in 4506) [ClassicSimilarity], result of:
              0.089422 = score(doc=4506,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.5416616 = fieldWeight in 4506, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4506)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    8.10.2000 11:52:22
  3. Melton, J.S.: ¬A use for the techniques of structural linguistics in documentation research (1965) 0.01
    0.014092816 = product of:
      0.042278446 = sum of:
        0.042278446 = product of:
          0.08455689 = sum of:
            0.08455689 = weight(_text_:methodology in 834) [ClassicSimilarity], result of:
              0.08455689 = score(doc=834,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.3981634 = fieldWeight in 834, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.0625 = fieldNorm(doc=834)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Index language (the system of symbols for representing subject content after analysis) is considered as a separate component and a variable in an information retrieval system. It is suggested that for purposes of testing, comparing and evaluating index language, the techniques of structural linguistics may provide a descriptive methodology by which all such languages (hierarchical and faceted classification, analytico-synthetic indexing, traditional subject indexing, indexes and classifications based on automatic text analysis, etc.) could be described in term of a linguistic model, and compared on a common basis
  4. Mikacic, M.: Statistical system for subject designation (SSSD) for libraries in Croatia (1996) 0.01
    0.012043982 = product of:
      0.036131945 = sum of:
        0.036131945 = product of:
          0.07226389 = sum of:
            0.07226389 = weight(_text_:22 in 2943) [ClassicSimilarity], result of:
              0.07226389 = score(doc=2943,freq=4.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.4377287 = fieldWeight in 2943, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2943)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    31. 7.2006 14:22:21
    Source
    Cataloging and classification quarterly. 22(1996) no.1, S.77-93
  5. Schmitz-Esser, W.: Language of general communication and concept compatibility (1996) 0.01
    0.010645477 = product of:
      0.03193643 = sum of:
        0.03193643 = product of:
          0.06387286 = sum of:
            0.06387286 = weight(_text_:22 in 6089) [ClassicSimilarity], result of:
              0.06387286 = score(doc=6089,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.38690117 = fieldWeight in 6089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=6089)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Pages
    S.11-22
  6. Vickery, B.B.: Structure and function in retrieval languages (2006) 0.01
    0.010569612 = product of:
      0.031708833 = sum of:
        0.031708833 = product of:
          0.063417666 = sum of:
            0.063417666 = weight(_text_:methodology in 5584) [ClassicSimilarity], result of:
              0.063417666 = score(doc=5584,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.29862255 = fieldWeight in 5584, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5584)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The purpose of this paper is to summarize the varied structural characteristics which may be present in retrieval languages. Design/methodology/approach - The languages serve varied purposes in information systems, and a number of these are identified. The relations between structure and function are discussed and suggestions made as to the most suitable structures needed for various purposes. Findings - A quantitative approach has been developed: a simple measure is the number of separate terms in a retrieval language, but this has to be related to the scope of its subject field. Some ratio of terms to items in the field seems a more suitable measure of the average specificity of the terms. Other aspects can be quantified - for example, the average number of links in hierarchical chains, or the average number of cross-references in a thesaurus. Originality/value - All the approaches to the analysis of retrieval language reported in this paper are of continuing value. Some practical studies of computer information systems undertaken by Aslib Research Department have suggested a further approach.
  7. Gilchrist, A.: Structure and function in retrieval (2006) 0.01
    0.010569612 = product of:
      0.031708833 = sum of:
        0.031708833 = product of:
          0.063417666 = sum of:
            0.063417666 = weight(_text_:methodology in 5585) [ClassicSimilarity], result of:
              0.063417666 = score(doc=5585,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.29862255 = fieldWeight in 5585, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5585)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - This paper forms part of the series "60 years of the best in information research", marking the 60th anniversary of the Journal of Documentation. It aims to review the influence of Brian Vickery's 1971 paper, "Structure and function in retrieval languages". The paper is not an update of Vickery's work, but a comment on a greatly changed environment, in which his analysis still has much validity. Design/methodology/approach - A commentary on selected literature illustrates the continuing relevance of Vickery's ideas. Findings - Generic survey and specific reference are still the main functions of retrieval languages, with minor functional additions such as relevance ranking. New structures are becoming increasingly significant, through developments such as XML. Future development in artificial intelligence hold out new prospects still. Originality/value - The paper shows the continuing relevance of "traditional" ideas of information science from the 1960s and 1970s.
  8. Degez, D.: Compatibilité des langages d'indexation mariage, cohabitation ou fusion? : Quelques examples concrèts (1998) 0.01
    0.0074518337 = product of:
      0.0223555 = sum of:
        0.0223555 = product of:
          0.044711 = sum of:
            0.044711 = weight(_text_:22 in 2245) [ClassicSimilarity], result of:
              0.044711 = score(doc=2245,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.2708308 = fieldWeight in 2245, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2245)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    1. 8.1996 22:01:00
  9. Dextre Clarke, S.G.: Thesaural relationships (2001) 0.01
    0.0074518337 = product of:
      0.0223555 = sum of:
        0.0223555 = product of:
          0.044711 = sum of:
            0.044711 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.044711 = score(doc=1149,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.2708308 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1149)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 9.2007 15:45:57
  10. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2010) 0.01
    0.0074518337 = product of:
      0.0223555 = sum of:
        0.0223555 = product of:
          0.044711 = sum of:
            0.044711 = weight(_text_:22 in 4792) [ClassicSimilarity], result of:
              0.044711 = score(doc=4792,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.2708308 = fieldWeight in 4792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4792)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  11. Rolling, L.: ¬The role of graphic display of concept relationships in indexing and retrieval vocabularies (1985) 0.01
    0.007046408 = product of:
      0.021139223 = sum of:
        0.021139223 = product of:
          0.042278446 = sum of:
            0.042278446 = weight(_text_:methodology in 3646) [ClassicSimilarity], result of:
              0.042278446 = score(doc=3646,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.1990817 = fieldWeight in 3646, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3646)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The use of diagrams to express relationships in classification is not new. Many classificationists have used this approach, but usually in a minor display to make a point or for part of a difficult relational situation. Ranganathan, for example, used diagrams for some of his more elusive concepts. The thesaurus in particular and subject headings in general, with direct and indirect crossreferences or equivalents, need many more diagrams than normally are included to make relationships and even semantics clear. A picture very often is worth a thousand words. Rolling has used directed graphs (arrowgraphs) to join terms as a practical method for rendering relationships between indexing terms lucid. He has succeeded very weIl in this endeavor. Four diagrams in this selection are all that one needs to explain how to employ the system; from initial listing to completed arrowgraph. The samples of his work include illustration of off-page connectors between arrowgraphs. The great advantage to using diagrams like this is that they present relations between individual terms in a format that is easy to comprehend. But of even greater value is the fact that one can use his arrowgraphs as schematics for making three-dimensional wire-and-ball models, in which the relationships may be seen even more clearly. In fact, errors or gaps in relations are much easier to find with this methodology. One also can get across the notion of the threedimensionality of classification systems with such models. Pettee's "hand reaching up and over" (q.v.) is not a figment of the imagination. While the actual hand is a wire or stick, the concept visualized is helpful in illuminating the three-dimensional figure that is latent in all systems that have cross-references or "broader," "narrower," or, especially, "related" terms. Classification schedules, being hemmed in by the dimensions of the printed page, also benefit from such physical illustrations. Rolling, an engineer by conviction, was the developer of information systems for the Cobalt Institute, the European Atomic Energy Community, and European Coal and Steel Community. He also developed and promoted computer-aided translation at the Commission of the European Communities in Luxembourg. One of his objectives has always been to increase the efficiency of mono- and multilingual thesauri for use in multinational information systems.
  12. Mazzocchi, F.: Relations in KOS : is it possible to couple a common nature with different roles? (2017) 0.01
    0.007046408 = product of:
      0.021139223 = sum of:
        0.021139223 = product of:
          0.042278446 = sum of:
            0.042278446 = weight(_text_:methodology in 78) [ClassicSimilarity], result of:
              0.042278446 = score(doc=78,freq=2.0), product of:
                0.21236731 = queryWeight, product of:
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.047143444 = queryNorm
                0.1990817 = fieldWeight in 78, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.504705 = idf(docFreq=1328, maxDocs=44218)
                  0.03125 = fieldNorm(doc=78)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The purpose of this paper, which increases and deepens what was expressed in a previous work (Mazzocchi et al., 2007), is to scrutinize the underlying assumptions of the types of relations included in thesauri, particularly the genus-species relation. Logicist approaches to information organization, which are still dominant, will be compared with hermeneutically oriented approaches. In the light of these approaches, the nature and features of the relations, and what the notion of a priori could possibly mean with regard to them, are examined, together with the implications for designing and implementing knowledge organizations systems (KOS). Design/methodology/approach The inquiry is based on how the relations are described in literature, engaging in particular a discussion with Hjørland (2015) and Svenonius (2004). The philosophical roots of today's leading views are briefly illustrated, in order to put them under perspective and deconstruct the uncritical reception of their authority. To corroborate the discussion a semantic analysis of specific terms and relations is provided too. Findings All relations should be seen as "perspectival" (not as a priori). On the other hand, different types of relations, depending on the conceptual features of the terms involved, can hold a different degree of "stability." On this basis, they could be used to address different information concerns (e.g. interoperability vs expressiveness). Research limitations/implications Some arguments that the paper puts forth at the conceptual level need to be tested in application contexts. Originality/value This paper considers that the standpoint of logic and of hermeneutic (usually seen as conflicting) are both significant for information organization, and could be pragmatically integrated. In accordance with this view, an extension of thesaurus relations' set is advised, meaning that perspective hierarchical relations (i.e. relations that are not logically based but function contingently) should be also included in such a set.
  13. Maniez, J.: Fusion de banques de donnees documentaires at compatibilite des languages d'indexation (1997) 0.01
    0.006387286 = product of:
      0.019161858 = sum of:
        0.019161858 = product of:
          0.038323715 = sum of:
            0.038323715 = weight(_text_:22 in 2246) [ClassicSimilarity], result of:
              0.038323715 = score(doc=2246,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.23214069 = fieldWeight in 2246, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2246)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    1. 8.1996 22:01:00
  14. Mooers, C.N.: ¬The indexing language of an information retrieval system (1985) 0.00
    0.0037259168 = product of:
      0.01117775 = sum of:
        0.01117775 = product of:
          0.0223555 = sum of:
            0.0223555 = weight(_text_:22 in 3644) [ClassicSimilarity], result of:
              0.0223555 = score(doc=3644,freq=2.0), product of:
                0.16508831 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047143444 = queryNorm
                0.1354154 = fieldWeight in 3644, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3644)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Footnote
    Original in: Information retrieval today: papers presented at an Institute conducted by the Library School and the Center for Continuation Study, University of Minnesota, Sept. 19-22, 1962. Ed. by Wesley Simonton. Minneapolis, Minn.: The Center, 1963. S.21-36.