Search (65 results, page 1 of 4)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  1. Mlodzka-Stybel, A.: Towards continuous improvement of users' access to a library catalogue (2014) 0.11
    0.11375579 = product of:
      0.22751158 = sum of:
        0.11772404 = weight(_text_:description in 1466) [ClassicSimilarity], result of:
          0.11772404 = score(doc=1466,freq=4.0), product of:
            0.23150103 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.04979191 = queryNorm
            0.5085249 = fieldWeight in 1466, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1466)
        0.10978755 = sum of:
          0.06256474 = weight(_text_:access in 1466) [ClassicSimilarity], result of:
            0.06256474 = score(doc=1466,freq=4.0), product of:
              0.16876608 = queryWeight, product of:
                3.389428 = idf(docFreq=4053, maxDocs=44218)
                0.04979191 = queryNorm
              0.3707187 = fieldWeight in 1466, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.389428 = idf(docFreq=4053, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1466)
          0.04722281 = weight(_text_:22 in 1466) [ClassicSimilarity], result of:
            0.04722281 = score(doc=1466,freq=2.0), product of:
              0.17436278 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04979191 = queryNorm
              0.2708308 = fieldWeight in 1466, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1466)
      0.5 = coord(2/4)
    
    Abstract
    The paper discusses the issue of increasing users' access to library records by their publication in Google. Data from the records, converted into html format, have been indexed by Google. The process covered basic formal description fields of the records, description of the content, supported with a thesaurus, as well as an abstract, if present in the record. In addition to monitoring the end users' statistics, the pilot testing covered visibility of library records in Google search results.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  2. Smeaton, A.F.; Rijsbergen, C.J. van: ¬The retrieval effects of query expansion on a feedback document retrieval system (1983) 0.07
    0.07163848 = product of:
      0.14327696 = sum of:
        0.096054144 = weight(_text_:26 in 2134) [ClassicSimilarity], result of:
          0.096054144 = score(doc=2134,freq=2.0), product of:
            0.17584132 = queryWeight, product of:
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.04979191 = queryNorm
            0.5462547 = fieldWeight in 2134, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.109375 = fieldNorm(doc=2134)
        0.04722281 = product of:
          0.09444562 = sum of:
            0.09444562 = weight(_text_:22 in 2134) [ClassicSimilarity], result of:
              0.09444562 = score(doc=2134,freq=2.0), product of:
                0.17436278 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04979191 = queryNorm
                0.5416616 = fieldWeight in 2134, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=2134)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    30. 3.2001 13:32:22
    Source
    Computer journal. 26(1983), S.239-246
  3. Klas, C.-P.; Fuhr, N.; Schaefer, A.: Evaluating strategic support for information access in the DAFFODIL system (2004) 0.06
    0.059781354 = product of:
      0.11956271 = sum of:
        0.04116606 = weight(_text_:26 in 2419) [ClassicSimilarity], result of:
          0.04116606 = score(doc=2419,freq=2.0), product of:
            0.17584132 = queryWeight, product of:
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.04979191 = queryNorm
            0.23410915 = fieldWeight in 2419, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.046875 = fieldNorm(doc=2419)
        0.07839665 = sum of:
          0.037919957 = weight(_text_:access in 2419) [ClassicSimilarity], result of:
            0.037919957 = score(doc=2419,freq=2.0), product of:
              0.16876608 = queryWeight, product of:
                3.389428 = idf(docFreq=4053, maxDocs=44218)
                0.04979191 = queryNorm
              0.22468945 = fieldWeight in 2419, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.389428 = idf(docFreq=4053, maxDocs=44218)
                0.046875 = fieldNorm(doc=2419)
          0.040476695 = weight(_text_:22 in 2419) [ClassicSimilarity], result of:
            0.040476695 = score(doc=2419,freq=2.0), product of:
              0.17436278 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04979191 = queryNorm
              0.23214069 = fieldWeight in 2419, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2419)
      0.5 = coord(2/4)
    
    Date
    26. 5.1996 11:11:10
    16.11.2008 16:22:48
  4. Marx, E. et al.: Exploring term networks for semantic search over RDF knowledge graphs (2016) 0.05
    0.05117034 = product of:
      0.10234068 = sum of:
        0.0686101 = weight(_text_:26 in 3279) [ClassicSimilarity], result of:
          0.0686101 = score(doc=3279,freq=2.0), product of:
            0.17584132 = queryWeight, product of:
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.04979191 = queryNorm
            0.3901819 = fieldWeight in 3279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.078125 = fieldNorm(doc=3279)
        0.03373058 = product of:
          0.06746116 = sum of:
            0.06746116 = weight(_text_:22 in 3279) [ClassicSimilarity], result of:
              0.06746116 = score(doc=3279,freq=2.0), product of:
                0.17436278 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04979191 = queryNorm
                0.38690117 = fieldWeight in 3279, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3279)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    19.12.2014 19:26:51
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  5. Kopácsi, S. et al.: Development of a classification server to support metadata harmonization in a long term preservation system (2016) 0.05
    0.05117034 = product of:
      0.10234068 = sum of:
        0.0686101 = weight(_text_:26 in 3280) [ClassicSimilarity], result of:
          0.0686101 = score(doc=3280,freq=2.0), product of:
            0.17584132 = queryWeight, product of:
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.04979191 = queryNorm
            0.3901819 = fieldWeight in 3280, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.078125 = fieldNorm(doc=3280)
        0.03373058 = product of:
          0.06746116 = sum of:
            0.06746116 = weight(_text_:22 in 3280) [ClassicSimilarity], result of:
              0.06746116 = score(doc=3280,freq=2.0), product of:
                0.17436278 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04979191 = queryNorm
                0.38690117 = fieldWeight in 3280, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3280)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    19.12.2014 19:26:51
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  6. Shah, C.: Collaborative information seeking : the art and science of making the whole greater than the sum of all (2012) 0.04
    0.037505865 = product of:
      0.07501173 = sum of:
        0.04756769 = weight(_text_:description in 360) [ClassicSimilarity], result of:
          0.04756769 = score(doc=360,freq=2.0), product of:
            0.23150103 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.04979191 = queryNorm
            0.20547508 = fieldWeight in 360, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.03125 = fieldNorm(doc=360)
        0.02744404 = weight(_text_:26 in 360) [ClassicSimilarity], result of:
          0.02744404 = score(doc=360,freq=2.0), product of:
            0.17584132 = queryWeight, product of:
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.04979191 = queryNorm
            0.15607277 = fieldWeight in 360, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.03125 = fieldNorm(doc=360)
      0.5 = coord(2/4)
    
    Abstract
    Today's complex, information-intensive problems often require people to work together. Mostly these tasks go far beyond simply searching together; they include information lookup, sharing, synthesis, and decision-making. In addition, they all have an end-goal that is mutually beneficial to all parties involved. Such "collaborative information seeking" (CIS) projects typically last several sessions and the participants all share an intention to contribute and benefit. Not surprisingly, these processes are highly interactive. Shah focuses on two individually well-understood notions: collaboration and information seeking, with the goal of bringing them together to show how it is a natural tendency for humans to work together on complex tasks. The first part of his book introduces the general notions of collaboration and information seeking, as well as related concepts, terminology, and frameworks; and thus provides the reader with a comprehensive treatment of the concepts underlying CIS. The second part of the book details CIS as a standalone domain. A series of frameworks, theories, and models are introduced to provide a conceptual basis for CIS. The final part describes several systems and applications of CIS, along with their broader implications on other fields such as computer-supported cooperative work (CSCW) and human-computer interaction (HCI). With this first comprehensive overview of an exciting new research field, Shah delivers to graduate students and researchers in academia and industry an encompassing description of the technologies involved, state-of-the-art results, and open challenges as well as research opportunities.
    Date
    26. 8.2012 12:58:24
  7. Faaborg, A.; Lagoze, C.: Semantic browsing (2003) 0.04
    0.03581924 = product of:
      0.07163848 = sum of:
        0.048027072 = weight(_text_:26 in 1026) [ClassicSimilarity], result of:
          0.048027072 = score(doc=1026,freq=2.0), product of:
            0.17584132 = queryWeight, product of:
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.04979191 = queryNorm
            0.27312735 = fieldWeight in 1026, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
        0.023611406 = product of:
          0.04722281 = sum of:
            0.04722281 = weight(_text_:22 in 1026) [ClassicSimilarity], result of:
              0.04722281 = score(doc=1026,freq=2.0), product of:
                0.17436278 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04979191 = queryNorm
                0.2708308 = fieldWeight in 1026, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1026)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    16.11.2008 16:26:28
    Source
    Research and advanced technology for digital libraries : 7th European Conference, proceedings / ECDL 2003, Trondheim, Norway, August 17-22, 2003
  8. Bettencourt, N.; Silva, N.; Barroso, J.: Semantically enhancing recommender systems (2016) 0.03
    0.033989757 = product of:
      0.067979515 = sum of:
        0.04116606 = weight(_text_:26 in 3374) [ClassicSimilarity], result of:
          0.04116606 = score(doc=3374,freq=2.0), product of:
            0.17584132 = queryWeight, product of:
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.04979191 = queryNorm
            0.23410915 = fieldWeight in 3374, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.046875 = fieldNorm(doc=3374)
        0.026813459 = product of:
          0.053626917 = sum of:
            0.053626917 = weight(_text_:access in 3374) [ClassicSimilarity], result of:
              0.053626917 = score(doc=3374,freq=4.0), product of:
                0.16876608 = queryWeight, product of:
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.04979191 = queryNorm
                0.31775886 = fieldWeight in 3374, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3374)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    As the amount of content and the number of users in social relationships is continually growing in the Internet, resource sharing and access policy management is difficult, time-consuming and error-prone. Cross-domain recommendation of private or protected resources managed and secured by each domain's specific access rules is impracticable due to private security policies and poor sharing mechanisms. This work focus on exploiting resource's content, user's preferences, users' social networks and semantic information to cross-relate different resources through their meta information using recommendation techniques that combine collaborative-filtering techniques with semantics annotations, by generating associations between resources. The semantic similarities established between resources are used on a hybrid recommendation engine that interprets user and resources' semantic information. The recommendation engine allows the promotion and discovery of unknown-unknown resources to users that could not even know about the existence of those resources thus providing means to solve the cross-domain recommendation of private or protected resources.
    Date
    19.12.2014 19:26:51
  9. Walker, S.; DeVere, R.: Improving subject retrieval in online catalogues : T.2: Relevance feedback and query expansion (1990) 0.03
    0.029729806 = product of:
      0.11891922 = sum of:
        0.11891922 = weight(_text_:description in 1816) [ClassicSimilarity], result of:
          0.11891922 = score(doc=1816,freq=2.0), product of:
            0.23150103 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.04979191 = queryNorm
            0.5136877 = fieldWeight in 1816, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.078125 = fieldNorm(doc=1816)
      0.25 = coord(1/4)
    
    Content
    1. Introduction // 2. Query modification through relevance feedback // 3. System design & description 4. Evaluation // 5. Analysis & results // 6. Conclusions and recommendations
  10. Hannech, A.: Système de recherche d'information étendue basé sur une projection multi-espaces (2018) 0.03
    0.028252756 = product of:
      0.056505512 = sum of:
        0.04756769 = weight(_text_:description in 4472) [ClassicSimilarity], result of:
          0.04756769 = score(doc=4472,freq=8.0), product of:
            0.23150103 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.04979191 = queryNorm
            0.20547508 = fieldWeight in 4472, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.015625 = fieldNorm(doc=4472)
        0.00893782 = product of:
          0.01787564 = sum of:
            0.01787564 = weight(_text_:access in 4472) [ClassicSimilarity], result of:
              0.01787564 = score(doc=4472,freq=4.0), product of:
                0.16876608 = queryWeight, product of:
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.04979191 = queryNorm
                0.10591962 = fieldWeight in 4472, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.015625 = fieldNorm(doc=4472)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Dans d'autres cas, le profil de l'utilisateur peut être mal exploité pour extraire ou inférer ses nouveaux besoins en information. Ce problème est beaucoup plus accentué avec les requêtes ambigües. Lorsque plusieurs centres d'intérêt auxquels est liée une requête ambiguë sont identifiés dans le profil de l'utilisateur, le système se voit incapable de sélectionner les données pertinentes depuis ce profil pour répondre à la requête. Ceci a un impact direct sur la qualité des résultats fournis à cet utilisateur. Afin de remédier à quelques-unes de ces limitations, nous nous sommes intéressés dans ce cadre de cette thèse de recherche au développement de techniques destinées principalement à l'amélioration de la pertinence des résultats des SRIs actuels et à faciliter l'exploration de grandes collections de documents. Pour ce faire, nous proposons une solution basée sur un nouveau concept d'indexation et de recherche d'information appelé la projection multi-espaces. Cette proposition repose sur l'exploitation de différentes catégories d'information sémantiques et sociales qui permettent d'enrichir l'univers de représentation des documents et des requêtes de recherche en plusieurs dimensions d'interprétations. L'originalité de cette représentation est de pouvoir distinguer entre les différentes interprétations utilisées pour la description et la recherche des documents. Ceci donne une meilleure visibilité sur les résultats retournés et aide à apporter une meilleure flexibilité de recherche et d'exploration, en donnant à l'utilisateur la possibilité de naviguer une ou plusieurs vues de données qui l'intéressent le plus. En outre, les univers multidimensionnels de représentation proposés pour la description des documents et l'interprétation des requêtes de recherche aident à améliorer la pertinence des résultats de l'utilisateur en offrant une diversité de recherche/exploration qui aide à répondre à ses différents besoins et à ceux des autres différents utilisateurs. Cette étude exploite différents aspects liés à la recherche personnalisée et vise à résoudre les problèmes engendrés par l'évolution des besoins en information de l'utilisateur. Ainsi, lorsque le profil de cet utilisateur est utilisé par notre système, une technique est proposée et employée pour identifier les intérêts les plus représentatifs de ses besoins actuels dans son profil. Cette technique se base sur la combinaison de trois facteurs influents, notamment le facteur contextuel, fréquentiel et temporel des données. La capacité des utilisateurs à interagir, à échanger des idées et d'opinions, et à former des réseaux sociaux sur le Web, a amené les systèmes à s'intéresser aux types d'interactions de ces utilisateurs, au niveau d'interaction entre eux ainsi qu'à leurs rôles sociaux dans le système. Ces informations sociales sont abordées et intégrées dans ce travail de recherche. L'impact et la manière de leur intégration dans le processus de RI sont étudiés pour améliorer la pertinence des résultats.
    Since its appearance in the early 90's, the World Wide Web (WWW or Web) has provided universal access to knowledge and the world of information has been primarily witness to a great revolution (the digital revolution). It quickly became very popular, making it the largest and most comprehensive database and knowledge base thanks to the amount and diversity of data it contains. However, the considerable increase and evolution of these data raises important problems for users, in particular for accessing the documents most relevant to their search queries. In order to cope with this exponential explosion of data volume and facilitate their access by users, various models are offered by information retrieval systems (IRS) for the representation and retrieval of web documents. Traditional SRIs use simple keywords that are not semantically linked to index and retrieve these documents. This creates limitations in terms of the relevance and ease of exploration of results. To overcome these limitations, existing techniques enrich documents by integrating external keywords from different sources. However, these systems still suffer from limitations that are related to the exploitation techniques of these sources of enrichment. When the different sources are used so that they cannot be distinguished by the system, this limits the flexibility of the exploration models that can be applied to the results returned by this system. Users then feel lost to these results, and find themselves forced to filter them manually to select the relevant information. If they want to go further, they must reformulate and target their search queries even more until they reach the documents that best meet their expectations. In this way, even if the systems manage to find more relevant results, their presentation remains problematic. In order to target research to more user-specific information needs and improve the relevance and exploration of its research findings, advanced SRIs adopt different data personalization techniques that assume that current research of user is directly related to his profile and / or previous browsing / search experiences.
    However, this assumption does not hold in all cases, the needs of the user evolve over time and can move away from his previous interests stored in his profile. In other cases, the user's profile may be misused to extract or infer new information needs. This problem is much more accentuated with ambiguous queries. When multiple POIs linked to a search query are identified in the user's profile, the system is unable to select the relevant data from that profile to respond to that request. This has a direct impact on the quality of the results provided to this user. In order to overcome some of these limitations, in this research thesis, we have been interested in the development of techniques aimed mainly at improving the relevance of the results of current SRIs and facilitating the exploration of major collections of documents. To do this, we propose a solution based on a new concept and model of indexing and information retrieval called multi-spaces projection. This proposal is based on the exploitation of different categories of semantic and social information that enrich the universe of document representation and search queries in several dimensions of interpretations. The originality of this representation is to be able to distinguish between the different interpretations used for the description and the search for documents. This gives a better visibility on the results returned and helps to provide a greater flexibility of search and exploration, giving the user the ability to navigate one or more views of data that interest him the most. In addition, the proposed multidimensional representation universes for document description and search query interpretation help to improve the relevance of the user's results by providing a diversity of research / exploration that helps meet his diverse needs and those of other different users. This study exploits different aspects that are related to the personalized search and aims to solve the problems caused by the evolution of the information needs of the user. Thus, when the profile of this user is used by our system, a technique is proposed and used to identify the interests most representative of his current needs in his profile. This technique is based on the combination of three influential factors, including the contextual, frequency and temporal factor of the data. The ability of users to interact, exchange ideas and opinions, and form social networks on the Web, has led systems to focus on the types of interactions these users have at the level of interaction between them as well as their social roles in the system. This social information is discussed and integrated into this research work. The impact and how they are integrated into the IR process are studied to improve the relevance of the results.
  11. Zeng, M.L.; Gracy, K.F.; Zumer, M.: Using a semantic analysis tool to generate subject access points : a study using Panofsky's theory and two research samples (2014) 0.03
    0.026538998 = product of:
      0.10615599 = sum of:
        0.10615599 = sum of:
          0.0656793 = weight(_text_:access in 1464) [ClassicSimilarity], result of:
            0.0656793 = score(doc=1464,freq=6.0), product of:
              0.16876608 = queryWeight, product of:
                3.389428 = idf(docFreq=4053, maxDocs=44218)
                0.04979191 = queryNorm
              0.38917357 = fieldWeight in 1464, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.389428 = idf(docFreq=4053, maxDocs=44218)
                0.046875 = fieldNorm(doc=1464)
          0.040476695 = weight(_text_:22 in 1464) [ClassicSimilarity], result of:
            0.040476695 = score(doc=1464,freq=2.0), product of:
              0.17436278 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04979191 = queryNorm
              0.23214069 = fieldWeight in 1464, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1464)
      0.25 = coord(1/4)
    
    Abstract
    This paper attempts to explore an approach of using an automatic semantic analysis tool to enhance the "subject" access to materials that are not included in the usual library subject cataloging process. Using two research samples the authors analyzed the access points supplied by OpenCalais, a semantic analysis tool. As an aid in understanding how computerized subject analysis might be approached, this paper suggests using the three-layer framework that has been accepted and applied in image analysis, developed by Erwin Panofsky.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  12. Oard, D.W.: Alternative approaches for cross-language text retrieval (1997) 0.03
    0.026340859 = product of:
      0.052681718 = sum of:
        0.04162173 = weight(_text_:description in 1164) [ClassicSimilarity], result of:
          0.04162173 = score(doc=1164,freq=2.0), product of:
            0.23150103 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.04979191 = queryNorm
            0.17979069 = fieldWeight in 1164, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1164)
        0.011059988 = product of:
          0.022119977 = sum of:
            0.022119977 = weight(_text_:access in 1164) [ClassicSimilarity], result of:
              0.022119977 = score(doc=1164,freq=2.0), product of:
                0.16876608 = queryWeight, product of:
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.04979191 = queryNorm
                0.13106886 = fieldWeight in 1164, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1164)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The explosive growth of the Internet and other sources of networked information have made automatic mediation of access to networked information sources an increasingly important problem. Much of this information is expressed as electronic text, and it is becoming practical to automatically convert some printed documents and recorded speech to electronic text as well. Thus, automated systems capable of detecting useful documents are finding widespread application. With even a small number of languages it can be inconvenient to issue the same query repeatedly in every language, so users who are able to read more than one language will likely prefer a multilingual text retrieval system over a collection of monolingual systems. And since reading ability in a language does not always imply fluent writing ability in that language, such users will likely find cross-language text retrieval particularly useful for languages in which they are less confident of their ability to express their information needs effectively. The use of such systems can be also be beneficial if the user is able to read only a single language. For example, when only a small portion of the document collection will ever be examined by the user, performing retrieval before translation can be significantly more economical than performing translation before retrieval. So when the application is sufficiently important to justify the time and effort required for translation, those costs can be minimized if an effective cross-language text retrieval system is available. Even when translation is not available, there are circumstances in which cross-language text retrieval could be useful to a monolingual user. For example, a researcher might find a paper published in an unfamiliar language useful if that paper contains references to works by the same author that are in the researcher's native language.
    Multilingual text retrieval can be defined as selection of useful documents from collections that may contain several languages (English, French, Chinese, etc.). This formulation allows for the possibility that individual documents might contain more than one language, a common occurrence in some applications. Both cross-language and within-language retrieval are included in this formulation, but it is the cross-language aspect of the problem which distinguishes multilingual text retrieval from its well studied monolingual counterpart. At the SIGIR 96 workshop on "Cross-Linguistic Information Retrieval" the participants discussed the proliferation of terminology being used to describe the field and settled on "Cross-Language" as the best single description of the salient aspect of the problem. "Multilingual" was felt to be too broad, since that term has also been used to describe systems able to perform within-language retrieval in more than one language but that lack any cross-language capability. "Cross-lingual" and "cross-linguistic" were felt to be equally good descriptions of the field, but "crosslanguage" was selected as the preferred term in the interest of standardization. Unfortunately, at about the same time the U.S. Defense Advanced Research Projects Agency (DARPA) introduced "translingual" as their preferred term, so we are still some distance from reaching consensus on this matter.
  13. Jun, W.: ¬A knowledge network constructed by integrating classification, thesaurus and metadata in a digital library (2003) 0.02
    0.016817719 = product of:
      0.067270875 = sum of:
        0.067270875 = weight(_text_:description in 1254) [ClassicSimilarity], result of:
          0.067270875 = score(doc=1254,freq=4.0), product of:
            0.23150103 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.04979191 = queryNorm
            0.29058564 = fieldWeight in 1254, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.03125 = fieldNorm(doc=1254)
      0.25 = coord(1/4)
    
    Abstract
    Knowledge management in digital libraries is a universal problem. Keyword-based searching is applied everywhere no matter whether the resources are indexed databases or full-text Web pages. In keyword matching, the valuable content description and indexing of the metadata, such as the subject descriptors and the classification notations, are merely treated as common keywords to be matched with the user query. Without the support of vocabulary control tools, such as classification systems and thesauri, the intelligent labor of content analysis, description and indexing in metadata production are seriously wasted. New retrieval paradigms are needed to exploit the potential of the metadata resources. Could classification and thesauri, which contain the condensed intelligence of generations of librarians, be used in a digital library to organize the networked information, especially metadata, to facilitate their usability and change the digital library into a knowledge management environment? To examine that question, we designed and implemented a new paradigm that incorporates a classification system, a thesaurus and metadata. The classification and the thesaurus are merged into a concept network, and the metadata are distributed into the nodes of the concept network according to their subjects. The abstract concept node instantiated with the related metadata records becomes a knowledge node. A coherent and consistent knowledge network is thus formed. It is not only a framework for resource organization but also a structure for knowledge navigation, retrieval and learning. We have built an experimental system based on the Chinese Classification and Thesaurus, which is the most comprehensive and authoritative in China, and we have incorporated more than 5000 bibliographic records in the computing domain from the Peking University Library. The result is encouraging. In this article, we review the tools, the architecture and the implementation of our experimental system, which is called Vision.
  14. Melucci, M.: Contextual search : a computational framework (2012) 0.01
    0.014864903 = product of:
      0.05945961 = sum of:
        0.05945961 = weight(_text_:description in 4913) [ClassicSimilarity], result of:
          0.05945961 = score(doc=4913,freq=2.0), product of:
            0.23150103 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.04979191 = queryNorm
            0.25684384 = fieldWeight in 4913, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4913)
      0.25 = coord(1/4)
    
    Abstract
    The growing availability of data in electronic form, the expansion of the World Wide Web and the accessibility of computational methods for large-scale data processing have allowed researchers in Information Retrieval (IR) to design systems which can effectively and efficiently constrain search within the boundaries given by context, thus transforming classical search into contextual search. Contextual Search: A Computational Framework introduces contextual search within a computational framework based on contextual variables, contextual factors and statistical models. It describes how statistical models can process contextual variables to infer the contextual factors underlying the current search context. It also provides background to the subject by: placing it among other surveys on relevance, interaction, context, and behaviour; providing a description of the contextual variables used for implementing the statistical models which represent and predict relevance and contextual factors; and providing an overview of the evaluation methodologies and findings relevant to this subject. Contextual Search: A Computational Framework is a highly recommended read, both for beginners who are embarking on research in this area and as a useful reference for established IR researchers.
  15. Symonds, M.; Bruza, P.; Zuccon, G.; Koopman, B.; Sitbon, L.; Turner, I.: Automatic query expansion : a structural linguistic perspective (2014) 0.01
    0.014864903 = product of:
      0.05945961 = sum of:
        0.05945961 = weight(_text_:description in 1338) [ClassicSimilarity], result of:
          0.05945961 = score(doc=1338,freq=2.0), product of:
            0.23150103 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.04979191 = queryNorm
            0.25684384 = fieldWeight in 1338, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1338)
      0.25 = coord(1/4)
    
    Abstract
    A user's query is considered to be an imprecise description of their information need. Automatic query expansion is the process of reformulating the original query with the goal of improving retrieval effectiveness. Many successful query expansion techniques model syntagmatic associations that infer two terms co-occur more often than by chance in natural language. However, structural linguistics relies on both syntagmatic and paradigmatic associations to deduce the meaning of a word. Given the success of dependency-based approaches to query expansion and the reliance on word meanings in the query formulation process, we argue that modeling both syntagmatic and paradigmatic information in the query expansion process improves retrieval effectiveness. This article develops and evaluates a new query expansion technique that is based on a formal, corpus-based model of word meaning that models syntagmatic and paradigmatic associations. We demonstrate that when sufficient statistical information exists, as in the case of longer queries, including paradigmatic information alone provides significant improvements in retrieval effectiveness across a wide variety of data sets. More generally, when our new query expansion approach is applied to large-scale web retrieval it demonstrates significant improvements in retrieval effectiveness over a strong baseline system, based on a commercial search engine.
  16. Ferreira, R.S.; Graça Pimentel, M. de; Cristo, M.: ¬A wikification prediction model based on the combination of latent, dyadic, and monadic features (2018) 0.01
    0.014864903 = product of:
      0.05945961 = sum of:
        0.05945961 = weight(_text_:description in 4119) [ClassicSimilarity], result of:
          0.05945961 = score(doc=4119,freq=2.0), product of:
            0.23150103 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.04979191 = queryNorm
            0.25684384 = fieldWeight in 4119, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4119)
      0.25 = coord(1/4)
    
    Abstract
    Considering repositories of web documents that are semantically linked and created in a collaborative fashion, as in the case of Wikipedia, a key problem faced by content providers is the placement of links in the articles. These links must support user navigation and provide a deeper semantic interpretation of the content. Current wikification methods exploit machine learning techniques to capture characteristics of the concepts and its associations. In previous work, we proposed a preliminary prediction model combining traditional predictors with a latent component which captures the concept graph topology by means of matrix factorization. In this work, we provide a detailed description of our method and a deeper comparison with a state-of-the-art wikification method using a sample of Wikipedia and report a gain up to 13% in F1 score. We also provide a comprehensive analysis of the model performance showing the importance of the latent predictor component and the attributes derived from the associations between the concepts. Moreover, we include an analysis that allows us to conclude that the model is resilient to ambiguity without including a disambiguation phase. We finally report the positive impact of selecting training samples from specific content quality classes.
  17. Gillitzer, B.: Yewno (2017) 0.01
    0.013066109 = product of:
      0.052264437 = sum of:
        0.052264437 = sum of:
          0.025279973 = weight(_text_:access in 3447) [ClassicSimilarity], result of:
            0.025279973 = score(doc=3447,freq=2.0), product of:
              0.16876608 = queryWeight, product of:
                3.389428 = idf(docFreq=4053, maxDocs=44218)
                0.04979191 = queryNorm
              0.14979297 = fieldWeight in 3447, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.389428 = idf(docFreq=4053, maxDocs=44218)
                0.03125 = fieldNorm(doc=3447)
          0.026984464 = weight(_text_:22 in 3447) [ClassicSimilarity], result of:
            0.026984464 = score(doc=3447,freq=2.0), product of:
              0.17436278 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04979191 = queryNorm
              0.15476047 = fieldWeight in 3447, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=3447)
      0.25 = coord(1/4)
    
    Abstract
    "Die Bayerische Staatsbibliothek testet den semantischen "Discovery Service" Yewno als zusätzliche thematische Suchmaschine für digitale Volltexte. Der Service ist unter folgendem Link erreichbar: https://www.bsb-muenchen.de/recherche-und-service/suchen-und-finden/yewno/. Das Identifizieren von Themen, um die es in einem Text geht, basiert bei Yewno alleine auf Methoden der künstlichen Intelligenz und des maschinellen Lernens. Dabei werden sie nicht - wie bei klassischen Katalogsystemen - einem Text als Ganzem zugeordnet, sondern der jeweiligen Textstelle. Die Eingabe eines Suchwortes bzw. Themas, bei Yewno "Konzept" genannt, führt umgehend zu einer grafischen Darstellung eines semantischen Netzwerks relevanter Konzepte und ihrer inhaltlichen Zusammenhänge. So ist ein Navigieren über thematische Beziehungen bis hin zu den Fundstellen im Text möglich, die dann in sogenannten Snippets angezeigt werden. In der Test-Anwendung der Bayerischen Staatsbibliothek durchsucht Yewno aktuell 40 Millionen englischsprachige Dokumente aus Publikationen namhafter Wissenschaftsverlage wie Cambridge University Press, Oxford University Press, Wiley, Sage und Springer, sowie Dokumente, die im Open Access verfügbar sind. Nach der dreimonatigen Testphase werden zunächst die Rückmeldungen der Nutzer ausgewertet. Ob und wann dann der Schritt von der klassischen Suchmaschine zum semantischen "Discovery Service" kommt und welche Bedeutung Anwendungen wie Yewno in diesem Zusammenhang einnehmen werden, ist heute noch nicht abzusehen. Die Software Yewno wurde vom gleichnamigen Startup in Zusammenarbeit mit der Stanford University entwickelt, mit der auch die Bayerische Staatsbibliothek eng kooperiert. [Inetbib-Posting vom 22.02.2017].
    Date
    22. 2.2017 10:16:49
  18. Boyack, K.W.; Wylie,B.N.; Davidson, G.S.: Information Visualization, Human-Computer Interaction, and Cognitive Psychology : Domain Visualizations (2002) 0.01
    0.011925561 = product of:
      0.047702245 = sum of:
        0.047702245 = product of:
          0.09540449 = sum of:
            0.09540449 = weight(_text_:22 in 1352) [ClassicSimilarity], result of:
              0.09540449 = score(doc=1352,freq=4.0), product of:
                0.17436278 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04979191 = queryNorm
                0.54716086 = fieldWeight in 1352, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1352)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:17:40
  19. Walker, S.: Subject access in online catalogues (1991) 0.01
    0.0109465495 = product of:
      0.043786198 = sum of:
        0.043786198 = product of:
          0.087572396 = sum of:
            0.087572396 = weight(_text_:access in 5690) [ClassicSimilarity], result of:
              0.087572396 = score(doc=5690,freq=6.0), product of:
                0.16876608 = queryWeight, product of:
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.04979191 = queryNorm
                0.51889807 = fieldWeight in 5690, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5690)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Discusses some of the methods of subject access to on-line catalohues (OPACs) and argues that none are entirley satisfactory. Describes 2 methods for improving subject access: best match searching; and automatic query expansion application and discusses their feasibility. Mentions emerging application standards for information retrieval and concludes that existing standards are incompatible with most methods for improving standards
  20. Buckley, C.; Allan, J.; Salton, G.: Automatic routing and retrieval using Smart : TREC-2 (1995) 0.01
    0.010291515 = product of:
      0.04116606 = sum of:
        0.04116606 = weight(_text_:26 in 5699) [ClassicSimilarity], result of:
          0.04116606 = score(doc=5699,freq=2.0), product of:
            0.17584132 = queryWeight, product of:
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.04979191 = queryNorm
            0.23410915 = fieldWeight in 5699, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.046875 = fieldNorm(doc=5699)
      0.25 = coord(1/4)
    
    Date
    30. 3.2001 13:55:26

Authors

Years

Languages

  • e 56
  • d 7
  • f 1
  • More… Less…

Types

  • a 51
  • el 9
  • m 8
  • r 3
  • x 1
  • More… Less…

Classifications