Search (3 results, page 1 of 1)

  • × theme_ss:"Computerlinguistik"
  • × theme_ss:"Literaturübersicht"
  1. Warner, A.J.: Natural language processing (1987) 0.02
    0.018134607 = product of:
      0.05440382 = sum of:
        0.05440382 = product of:
          0.10880764 = sum of:
            0.10880764 = weight(_text_:22 in 337) [ClassicSimilarity], result of:
              0.10880764 = score(doc=337,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.61904186 = fieldWeight in 337, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=337)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Annual review of information science and technology. 22(1987), S.79-108
  2. Chowdhury, G.G.: Natural language processing (2002) 0.02
    0.016952079 = product of:
      0.050856233 = sum of:
        0.050856233 = weight(_text_:electronic in 4284) [ClassicSimilarity], result of:
          0.050856233 = score(doc=4284,freq=2.0), product of:
            0.19623034 = queryWeight, product of:
              3.9095051 = idf(docFreq=2409, maxDocs=44218)
              0.05019314 = queryNorm
            0.259166 = fieldWeight in 4284, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9095051 = idf(docFreq=2409, maxDocs=44218)
              0.046875 = fieldNorm(doc=4284)
      0.33333334 = coord(1/3)
    
    Abstract
    Natural Language Processing (NLP) is an area of research and application that explores how computers can be used to understand and manipulate natural language text or speech to do useful things. NLP researchers aim to gather knowledge an how human beings understand and use language so that appropriate tools and techniques can be developed to make computer systems understand and manipulate natural languages to perform desired tasks. The foundations of NLP lie in a number of disciplines, namely, computer and information sciences, linguistics, mathematics, electrical and electronic engineering, artificial intelligence and robotics, and psychology. Applications of NLP include a number of fields of study, such as machine translation, natural language text processing and summarization, user interfaces, multilingual and cross-language information retrieval (CLIR), speech recognition, artificial intelligence, and expert systems. One important application area that is relatively new and has not been covered in previous ARIST chapters an NLP relates to the proliferation of the World Wide Web and digital libraries.
  3. Haas, S.W.: Natural language processing : toward large-scale, robust systems (1996) 0.01
    0.0090673035 = product of:
      0.02720191 = sum of:
        0.02720191 = product of:
          0.05440382 = sum of:
            0.05440382 = weight(_text_:22 in 7415) [ClassicSimilarity], result of:
              0.05440382 = score(doc=7415,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.30952093 = fieldWeight in 7415, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7415)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    State of the art review of natural language processing updating an earlier review published in ARIST 22(1987). Discusses important developments that have allowed for significant advances in the field of natural language processing: materials and resources; knowledge based systems and statistical approaches; and a strong emphasis on evaluation. Reviews some natural language processing applications and common problems still awaiting solution. Considers closely related applications such as language generation and th egeneration phase of machine translation which face the same problems as natural language processing. Covers natural language methodologies for information retrieval only briefly