Search (14 results, page 1 of 1)

  • × theme_ss:"Semantic Web"
  • × type_ss:"m"
  1. Willer, M.; Dunsire, G.: Bibliographic information organization in the Semantic Web (2013) 0.02
    0.019106109 = product of:
      0.057318322 = sum of:
        0.057318322 = product of:
          0.114636645 = sum of:
            0.114636645 = weight(_text_:publishing in 2143) [ClassicSimilarity], result of:
              0.114636645 = score(doc=2143,freq=6.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.46747392 = fieldWeight in 2143, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2143)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    New technologies will underpin the future generation of library catalogues. To facilitate their role providing information, serving users, and fulfilling their mission as cultural heritage and memory institutions, libraries must take a technological leap; their standards and services must be transformed to those of the Semantic Web. Bibliographic Information Organization in the Semantic Web explores the technologies that may power future library catalogues, and argues the necessity of such a leap. The text introduces international bibliographic standards and models, and fundamental concepts in their representation in the context of the Semantic Web. Subsequent chapters cover bibliographic information organization, linked open data, methodologies for publishing library metadata, discussion of the wider environment (museum, archival and publishing communities) and users, followed by a conclusion.
    Imprint
    Oxford : Chandos Publishing
  2. Ioannou, E.; Nejdl, W.; Niederée, C.; Velegrakis, Y.: Embracing uncertainty in entity linking (2012) 0.02
    0.015600072 = product of:
      0.046800215 = sum of:
        0.046800215 = product of:
          0.09360043 = sum of:
            0.09360043 = weight(_text_:publishing in 433) [ClassicSimilarity], result of:
              0.09360043 = score(doc=433,freq=4.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.38169086 = fieldWeight in 433, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=433)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The modern Web has grown from a publishing place of well-structured data and HTML pages for companies and experienced users into a vivid publishing and data exchange community in which everyone can participate, both as a data consumer and as a data producer. Unavoidably, the data available on the Web became highly heterogeneous, ranging from highly structured and semistructured to highly unstructured user-generated content, reflecting different perspectives and structuring principles. The full potential of such data can only be realized by combining information from multiple sources. For instance, the knowledge that is typically embedded in monolithic applications can be outsourced and, thus, used also in other applications. Numerous systems nowadays are already actively utilizing existing content from various sources such as WordNet or Wikipedia. Some well-known examples of such systems include DBpedia, Freebase, Spock, and DBLife. A major challenge during combining and querying information from multiple heterogeneous sources is entity linkage, i.e., the ability to detect whether two pieces of information correspond to the same real-world object. This chapter introduces a novel approach for addressing the entity linkage problem for heterogeneous, uncertain, and volatile data.
  3. Bizer, C.; Heath, T.: Linked Data : evolving the web into a global data space (2011) 0.01
    0.012480058 = product of:
      0.037440173 = sum of:
        0.037440173 = product of:
          0.07488035 = sum of:
            0.07488035 = weight(_text_:publishing in 4725) [ClassicSimilarity], result of:
              0.07488035 = score(doc=4725,freq=4.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.3053527 = fieldWeight in 4725, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4725)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The World Wide Web has enabled the creation of a global information space comprising linked documents. As the Web becomes ever more enmeshed with our daily lives, there is a growing desire for direct access to raw data not currently available on the Web or bound up in hypertext documents. Linked Data provides a publishing paradigm in which not only documents, but also data, can be a first class citizen of the Web, thereby enabling the extension of the Web with a global data space based on open standards - the Web of Data. In this Synthesis lecture we provide readers with a detailed technical introduction to Linked Data. We begin by outlining the basic principles of Linked Data, including coverage of relevant aspects of Web architecture. The remainder of the text is based around two main themes - the publication and consumption of Linked Data. Drawing on a practical Linked Data scenario, we provide guidance and best practices on: architectural approaches to publishing Linked Data; choosing URIs and vocabularies to identify and describe resources; deciding what data to return in a description of a resource on the Web; methods and frameworks for automated linking of data sets; and testing and debugging approaches for Linked Data deployments. We give an overview of existing Linked Data applications and then examine the architectures that are used to consume Linked Data from the Web, alongside existing tools and frameworks that enable these. Readers can expect to gain a rich technical understanding of Linked Data fundamentals, as the basis for application development, research or further study.
  4. Bizer, C.; Mendes, P.N.; Jentzsch, A.: Topology of the Web of Data (2012) 0.01
    0.012480058 = product of:
      0.037440173 = sum of:
        0.037440173 = product of:
          0.07488035 = sum of:
            0.07488035 = weight(_text_:publishing in 425) [ClassicSimilarity], result of:
              0.07488035 = score(doc=425,freq=4.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.3053527 = fieldWeight in 425, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.03125 = fieldNorm(doc=425)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The degree of structure of Web content is the determining factor for the types of functionality that search engines can provide. The more well structured the Web content is, the easier it is for search engines to understand Web content and provide advanced functionality, such as faceted filtering or the aggregation of content from multiple Web sites, based on this understanding. Today, most Web sites are generated from structured data that is stored in relational databases. Thus, it does not require too much extra effort for Web sites to publish this structured data directly on the Web in addition to HTML pages, and thus help search engines to understand Web content and provide improved functionality. An early approach to realize this idea and help search engines to understand Web content is Microformats, a technique for markingup structured data about specific types on entities-such as tags, blog posts, people, or reviews-within HTML pages. As Microformats are focused on a few entity types, the World Wide Web Consortium (W3C) started in 2004 to standardize RDFa as an alternative, more generic language for embedding any type of data into HTML pages. Today, major search engines such as Google, Yahoo, and Bing extract Microformat and RDFa data describing products, reviews, persons, events, and recipes from Web pages and use the extracted data to improve the user's search experience. The search engines have started to aggregate structured data from different Web sites and augment their search results with these aggregated information units in the form of rich snippets which combine, for instance, data This chapter gives an overview of the topology of the Web of Data that has been created by publishing data on the Web using the microformats RDFa, Microdata and Linked Data publishing techniques.
  5. Weiand, K.; Hartl, A.; Hausmann, S.; Furche, T.; Bry, F.: Keyword-based search over semantic data (2012) 0.01
    0.011030916 = product of:
      0.03309275 = sum of:
        0.03309275 = product of:
          0.0661855 = sum of:
            0.0661855 = weight(_text_:publishing in 432) [ClassicSimilarity], result of:
              0.0661855 = score(doc=432,freq=2.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.26989618 = fieldWeight in 432, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=432)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    For a long while, the creation of Web content required at least basic knowledge of Web technologies, meaning that for many Web users, the Web was de facto a read-only medium. This changed with the arrival of the "social Web," when Web applications started to allow users to publish Web content without technological expertise. Here, content creation is often an inclusive, iterative, and interactive process. Examples of social Web applications include blogs, social networking sites, as well as many specialized applications, for example, for saving and sharing bookmarks and publishing photos. Social semantic Web applications are social Web applications in which knowledge is expressed not only in the form of text and multimedia but also through informal to formal annotations that describe, reflect, and enhance the content. These annotations often take the shape of RDF graphs backed by ontologies, but less formal annotations such as free-form tags or tags from a controlled vocabulary may also be available. Wikis are one example of social Web applications for collecting and sharing knowledge. They allow users to easily create and edit documents, so-called wiki pages, using a Web browser. The pages in a wiki are often heavily interlinked, which makes it easy to find related information and browse the content.
  6. Reasoning Web : Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures (2017) 0.01
    0.011030916 = product of:
      0.03309275 = sum of:
        0.03309275 = product of:
          0.0661855 = sum of:
            0.0661855 = weight(_text_:publishing in 3934) [ClassicSimilarity], result of:
              0.0661855 = score(doc=3934,freq=2.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.26989618 = fieldWeight in 3934, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3934)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Imprint
    Cham : Springer International Publishing
  7. Antoniou, G.; Harmelen, F. van: ¬A semantic Web primer (2004) 0.01
    0.009989109 = product of:
      0.029967325 = sum of:
        0.029967325 = weight(_text_:electronic in 468) [ClassicSimilarity], result of:
          0.029967325 = score(doc=468,freq=4.0), product of:
            0.19623034 = queryWeight, product of:
              3.9095051 = idf(docFreq=2409, maxDocs=44218)
              0.05019314 = queryNorm
            0.15271504 = fieldWeight in 468, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9095051 = idf(docFreq=2409, maxDocs=44218)
              0.01953125 = fieldNorm(doc=468)
      0.33333334 = coord(1/3)
    
    Footnote
    Rez. in: JASIST 57(2006) no.8, S.1132-1133 (H. Che): "The World Wide Web has been the main source of an important shift in the way people communicate with each other, get information, and conduct business. However, most of the current Web content is only suitable for human consumption. The main obstacle to providing better quality of service is that the meaning of Web content is not machine-accessible. The "Semantic Web" is envisioned by Tim Berners-Lee as a logical extension to the current Web that enables explicit representations of term meaning. It aims to bring the Web to its full potential via the exploration of these machine-processable metadata. To fulfill this, it pros ides some meta languages like RDF, OWL, DAML+OIL, and SHOE for expressing knowledge that has clear, unambiguous meanings. The first steps in searing the Semantic Web into the current Web are successfully underway. In the forthcoming years, these efforts still remain highly focused in the research and development community. In the next phase, the Semantic Web will respond more intelligently to user queries. The first chapter gets started with an excellent introduction to the Semantic Web vision. At first, today's Web is introduced, and problems with some current applications like search engines are also covered. Subsequently, knowledge management. business-to-consumer electronic commerce, business-to-business electronic commerce, and personal agents are used as examples to show the potential requirements for the Semantic Web. Next comes the brief description of the underpinning technologies, including metadata, ontology, logic, and agent. The differences between the Semantic Web and Artificial Intelligence are also discussed in a later subsection. In section 1.4, the famous "laser-cake" diagram is given to show a layered view of the Semantic Web. From chapter 2, the book starts addressing some of the most important technologies for constructing the Semantic Web. In chapter 2, the authors discuss XML and its related technologies such as namespaces, XPath, and XSLT. XML is a simple, very flexible text format which is often used for the exchange of a wide variety of data on the Web and elsewhere. The W3C has defined various languages on top of XML, such as RDF. Although this chapter is very well planned and written, many details are not included because of the extensiveness of the XML technologies. Many other books on XML provide more comprehensive coverage.
  8. Brambilla, M.; Ceri, S.: Designing exploratory search applications upon Web data sources (2012) 0.01
    0.008824733 = product of:
      0.026474198 = sum of:
        0.026474198 = product of:
          0.052948397 = sum of:
            0.052948397 = weight(_text_:publishing in 428) [ClassicSimilarity], result of:
              0.052948397 = score(doc=428,freq=2.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.21591695 = fieldWeight in 428, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.03125 = fieldNorm(doc=428)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Search is the preferred method to access information in today's computing systems. The Web, accessed through search engines, is universally recognized as the source for answering users' information needs. However, offering a link to a Web page does not cover all information needs. Even simple problems, such as "Which theater offers an at least three-stars action movie in London close to a good Italian restaurant," can only be solved by searching the Web multiple times, e.g., by extracting a list of the recent action movies filtered by ranking, then looking for movie theaters, then looking for Italian restaurants close to them. While search engines hint to useful information, the user's brain is the fundamental platform for information integration. An important trend is the availability of new, specialized data sources-the so-called "long tail" of the Web of data. Such carefully collected and curated data sources can be much more valuable than information currently available in Web pages; however, many sources remain hidden or insulated, in the lack of software solutions for bringing them to surface and making them usable in the search context. A new class of tailor-made systems, designed to satisfy the needs of users with specific aims, will support the publishing and integration of data sources for vertical domains; the user will be able to select sources based on individual or collective trust, and systems will be able to route queries to such sources and to provide easyto-use interfaces for combining them within search strategies, at the same time, rewarding the data source owners for each contribution to effective search. Efforts such as Google's Fusion Tables show that the technology for bringing hidden data sources to surface is feasible.
  9. Sakr, S.; Wylot, M.; Mutharaju, R.; Le-Phuoc, D.; Fundulaki, I.: Linked data : storing, querying, and reasoning (2018) 0.01
    0.008824733 = product of:
      0.026474198 = sum of:
        0.026474198 = product of:
          0.052948397 = sum of:
            0.052948397 = weight(_text_:publishing in 5329) [ClassicSimilarity], result of:
              0.052948397 = score(doc=5329,freq=2.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.21591695 = fieldWeight in 5329, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5329)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Imprint
    Cham : Springer International Publishing
  10. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.01
    0.00793389 = product of:
      0.023801671 = sum of:
        0.023801671 = product of:
          0.047603343 = sum of:
            0.047603343 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
              0.047603343 = score(doc=3283,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.2708308 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  11. Keyser, P. de: Indexing : from thesauri to the Semantic Web (2012) 0.01
    0.0068004774 = product of:
      0.020401431 = sum of:
        0.020401431 = product of:
          0.040802862 = sum of:
            0.040802862 = weight(_text_:22 in 3197) [ClassicSimilarity], result of:
              0.040802862 = score(doc=3197,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.23214069 = fieldWeight in 3197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3197)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    24. 8.2016 14:03:22
  12. Metadata and semantics research : 7th Research Conference, MTSR 2013 Thessaloniki, Greece, November 19-22, 2013. Proceedings (2013) 0.01
    0.005610108 = product of:
      0.016830323 = sum of:
        0.016830323 = product of:
          0.033660647 = sum of:
            0.033660647 = weight(_text_:22 in 1155) [ClassicSimilarity], result of:
              0.033660647 = score(doc=1155,freq=4.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.19150631 = fieldWeight in 1155, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1155)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    17.12.2013 12:51:22
  13. Multimedia content and the Semantic Web : methods, standards, and tools (2005) 0.00
    0.0049078222 = product of:
      0.014723467 = sum of:
        0.014723467 = product of:
          0.029446933 = sum of:
            0.029446933 = weight(_text_:22 in 150) [ClassicSimilarity], result of:
              0.029446933 = score(doc=150,freq=6.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.16753313 = fieldWeight in 150, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=150)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Classification
    006.7 22
    Date
    7. 3.2007 19:30:22
    DDC
    006.7 22
  14. Daconta, M.C.; Oberst, L.J.; Smith, K.T.: ¬The Semantic Web : A guide to the future of XML, Web services and knowledge management (2003) 0.00
    0.0045336518 = product of:
      0.013600955 = sum of:
        0.013600955 = product of:
          0.02720191 = sum of:
            0.02720191 = weight(_text_:22 in 320) [ClassicSimilarity], result of:
              0.02720191 = score(doc=320,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.15476047 = fieldWeight in 320, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=320)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 5.2007 10:37:38