Search (24 results, page 1 of 2)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"el"
  1. Quick Guide to Publishing a Classification Scheme on the Semantic Web (2008) 0.02
    0.021840101 = product of:
      0.0655203 = sum of:
        0.0655203 = product of:
          0.1310406 = sum of:
            0.1310406 = weight(_text_:publishing in 3061) [ClassicSimilarity], result of:
              0.1310406 = score(doc=3061,freq=4.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.5343672 = fieldWeight in 3061, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3061)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This document describes in brief how to express the content and structure of a classification scheme, and metadata about a classification scheme, in RDF using the SKOS vocabulary. RDF allows data to be linked to and/or merged with other RDF data by semantic web applications. The Semantic Web, which is based on the Resource Description Framework (RDF), provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries. Publishing classifications schemes in SKOS will unify the great many of existing classification efforts in the framework of the Semantic Web.
  2. Best Practice Recipes for Publishing RDF Vocabularies (2008) 0.02
    0.021840101 = product of:
      0.0655203 = sum of:
        0.0655203 = product of:
          0.1310406 = sum of:
            0.1310406 = weight(_text_:publishing in 4471) [ClassicSimilarity], result of:
              0.1310406 = score(doc=4471,freq=4.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.5343672 = fieldWeight in 4471, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4471)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This document describes best practice recipes for publishing vocabularies or ontologies on the Web (in RDF Schema or OWL). The features of each recipe are described in detail, so that vocabulary designers may choose the recipe best suited to their needs. Each recipe introduces general principles and an example configuration for use with an Apache HTTP server (which may be adapted to other environments). The recipes are all designed to be consistent with the architecture of the Web as currently specified, although the associated example configurations have been kept intentionally simple.
  3. Bandholtz, T.; Schulte-Coerne, T.; Glaser, R.; Fock, J.; Keller, T.: iQvoc - open source SKOS(XL) maintenance and publishing tool (2010) 0.02
    0.021840101 = product of:
      0.0655203 = sum of:
        0.0655203 = product of:
          0.1310406 = sum of:
            0.1310406 = weight(_text_:publishing in 604) [ClassicSimilarity], result of:
              0.1310406 = score(doc=604,freq=4.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.5343672 = fieldWeight in 604, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=604)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    iQvoc is a new open source SKOS-XL vocabulary management tool developed by the Federal Environment Agency, Germany, and innoQ Deutschland GmbH. Its immediate purpose is maintaining and publishing reference vocabularies in the upcoming Linked Data cloud of environmental information, but it may be easily adapted to host any SKOS- XL compliant vocabulary. iQvoc is implemented as a Ruby on Rails application running on top of JRuby - the Java implementation of the Ruby Programming Language. To increase the user experience when editing content, iQvoc uses heavily the JavaScript library jQuery.
  4. Quick Guide to Publishing a Thesaurus on the Semantic Web (2008) 0.02
    0.015443282 = product of:
      0.046329845 = sum of:
        0.046329845 = product of:
          0.09265969 = sum of:
            0.09265969 = weight(_text_:publishing in 4656) [ClassicSimilarity], result of:
              0.09265969 = score(doc=4656,freq=2.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.37785465 = fieldWeight in 4656, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4656)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  5. Bechhofer, S.; Harmelen, F. van; Hendler, J.; Horrocks, I.; McGuinness, D.L.; Patel-Schneider, P.F.; Stein, L.A.: OWL Web Ontology Language Reference (2004) 0.02
    0.015443282 = product of:
      0.046329845 = sum of:
        0.046329845 = product of:
          0.09265969 = sum of:
            0.09265969 = weight(_text_:publishing in 4684) [ClassicSimilarity], result of:
              0.09265969 = score(doc=4684,freq=2.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.37785465 = fieldWeight in 4684, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4684)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The Web Ontology Language OWL is a semantic markup language for publishing and sharing ontologies on the World Wide Web. OWL is developed as a vocabulary extension of RDF (the Resource Description Framework) and is derived from the DAML+OIL Web Ontology Language. This document contains a structured informal description of the full set of OWL language constructs and is meant to serve as a reference for OWL users who want to construct OWL ontologies.
  6. Pepper, S.: ¬The TAO of topic maps : finding the way in the age of infoglut (2002) 0.02
    0.015443282 = product of:
      0.046329845 = sum of:
        0.046329845 = product of:
          0.09265969 = sum of:
            0.09265969 = weight(_text_:publishing in 4724) [ClassicSimilarity], result of:
              0.09265969 = score(doc=4724,freq=2.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.37785465 = fieldWeight in 4724, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4724)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Topic maps are a new ISO standard for describing knowledge structures and associating them with information resources. As such they constitute an enabling technology for knowledge management. Dubbed "the GPS of the information universe", topic maps are also destined to provide powerful new ways of navigating large and interconnected corpora. While it is possible to represent immensely complex structures using topic maps, the basic concepts of the model - Topics, Associations, and Occurrences (TAO) - are easily grasped. This paper provides a non-technical introduction to these and other concepts (the IFS and BUTS of topic maps), relating them to things that are familiar to all of us from the realms of publishing and information management, and attempting to convey some idea of the uses to which topic maps will be put in the future.
  7. Networked Knowledge Organisation Systems and Services - TPDL 2011 : The 10th European Networked Knowledge Organisation Systems (NKOS) Workshop (2011) 0.01
    0.0132371 = product of:
      0.0397113 = sum of:
        0.0397113 = product of:
          0.0794226 = sum of:
            0.0794226 = weight(_text_:publishing in 6033) [ClassicSimilarity], result of:
              0.0794226 = score(doc=6033,freq=2.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.32387543 = fieldWeight in 6033, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6033)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    Programm mit Links auf die Präsentationen: Armando Stellato, Ahsan Morshed, Gudrun Johannsen, Yves Jacques, Caterina Caracciolo, Sachit Rajbhandari, Imma Subirats, Johannes Keizer: A Collaborative Framework for Managing and Publishing KOS - Christian Mader, Bernhard Haslhofer: Quality Criteria for Controlled Web Vocabularies - Ahsan Morshed, Benjamin Zapilko, Gudrun Johannsen, Philipp Mayr, Johannes Keizer: Evaluating approaches to automatically match thesauri from different domains for Linked Open Data - Johan De Smedt: SKOS extensions to cover mapping requirements - Mark Tomko: Translating biological data sets Into Linked Data - Daniel Kless: Ontologies and thesauri - similarities and differences - Antoine Isaac, Jacco van Ossenbruggen: Europeana and semantic alignment of vocabularies - Douglas Tudhope: Complementary use of ontologies and (other) KOS - Wilko van Hoek, Brigitte Mathiak, Philipp Mayr, Sascha Schüller: Comparing the accuracy of the semantic similarity provided by the Normalized Google Distance (NGD) and the Search Term Recommender (STR) - Denise Bedford: Selecting and Weighting Semantically Discovered Concepts as Social Tags - Stella Dextre Clarke, Johan De Smedt. ISO 25964-1: a new standard for development of thesauri and exchange of thesaurus data
  8. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.01
    0.011334131 = product of:
      0.03400239 = sum of:
        0.03400239 = product of:
          0.06800478 = sum of:
            0.06800478 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
              0.06800478 = score(doc=5576,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.38690117 = fieldWeight in 5576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5576)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    13.12.2017 14:17:22
  9. Tudhope, D.; Hodge, G.: Terminology registries (2007) 0.01
    0.011334131 = product of:
      0.03400239 = sum of:
        0.03400239 = product of:
          0.06800478 = sum of:
            0.06800478 = weight(_text_:22 in 539) [ClassicSimilarity], result of:
              0.06800478 = score(doc=539,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.38690117 = fieldWeight in 539, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=539)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    26.12.2011 13:22:07
  10. Sy, M.-F.; Ranwez, S.; Montmain, J.; Ragnault, A.; Crampes, M.; Ranwez, V.: User centered and ontology based information retrieval system for life sciences (2012) 0.01
    0.011301385 = product of:
      0.033904154 = sum of:
        0.033904154 = weight(_text_:electronic in 699) [ClassicSimilarity], result of:
          0.033904154 = score(doc=699,freq=2.0), product of:
            0.19623034 = queryWeight, product of:
              3.9095051 = idf(docFreq=2409, maxDocs=44218)
              0.05019314 = queryNorm
            0.17277734 = fieldWeight in 699, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9095051 = idf(docFreq=2409, maxDocs=44218)
              0.03125 = fieldNorm(doc=699)
      0.33333334 = coord(1/3)
    
    Abstract
    Background: Because of the increasing number of electronic resources, designing efficient tools to retrieve and exploit them is a major challenge. Some improvements have been offered by semantic Web technologies and applications based on domain ontologies. In life science, for instance, the Gene Ontology is widely exploited in genomic applications and the Medical Subject Headings is the basis of biomedical publications indexation and information retrieval process proposed by PubMed. However current search engines suffer from two main drawbacks: there is limited user interaction with the list of retrieved resources and no explanation for their adequacy to the query is provided. Users may thus be confused by the selection and have no idea on how to adapt their queries so that the results match their expectations. Results: This paper describes an information retrieval system that relies on domain ontology to widen the set of relevant documents that is retrieved and that uses a graphical rendering of query results to favor user interactions. Semantic proximities between ontology concepts and aggregating models are used to assess documents adequacy with respect to a query. The selection of documents is displayed in a semantic map to provide graphical indications that make explicit to what extent they match the user's query; this man/machine interface favors a more interactive and iterative exploration of data corpus, by facilitating query concepts weighting and visual explanation. We illustrate the benefit of using this information retrieval system on two case studies one of which aiming at collecting human genes related to transcription factors involved in hemopoiesis pathway. Conclusions: The ontology based information retrieval system described in this paper (OBIRS) is freely available at: http://www.ontotoolkit.mines-ales.fr/ObirsClient/. This environment is a first step towards a user centred application in which the system enlightens relevant information to provide decision help.
  11. Riva, P.; Doerr, M.; Zumer, M.: FRBRoo: enabling a common view of information from memory institutions (2008) 0.01
    0.011030916 = product of:
      0.03309275 = sum of:
        0.03309275 = product of:
          0.0661855 = sum of:
            0.0661855 = weight(_text_:publishing in 3743) [ClassicSimilarity], result of:
              0.0661855 = score(doc=3743,freq=2.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.26989618 = fieldWeight in 3743, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3743)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In 2008 the FRBR/CRM Harmonisation Working Group has achieved a major milestone: a complete version of the object-oriented definition of FRBR (FRBRoo) was released for comment. After a brief overview of the history and context of the Working Group, this paper focuses on the primary contributions resulting from this work. - FRBRoo is a self-contained document which expresses the concepts of FRBR using the objectoriented methodology and framework of CIDOC CRM. It is an alternative view on library conceptualisation for a different purpose, not a replacement for FRBR. - This 'translation' process presented an opportunity to verify and confirm FRBR's internal consistency. - FRBRoo offers a common view of library and museum documentation as two kinds of information from memory institutions. Such a common view is necessary to provide interoperable information systems for all users interested in accessing common or related content. - The analysis provided an opportunity for mutual enrichment of FRBR and CIDOC CRM. Examples include: - - Addition of the modelling of time and events to FRBR, which can be seen in its application to the publishing process - - Clarification of the manifestation entity - - Explicit modelling of performances and recordings in FRBR - - Adding the work entity to CRM - - Adding the identifier assignment process to CRM. - Producing a formalisation which is more suited for implementation with object-oriented tools, and which facilitates the testing and adoption of FRBR concepts in implementations with different functional specifications and in different environments.
  12. Miles, A.; Matthews, B.; Beckett, D.; Brickley, D.; Wilson, M.; Rogers, N.: SKOS: A language to describe simple knowledge structures for the web (2005) 0.01
    0.010920051 = product of:
      0.03276015 = sum of:
        0.03276015 = product of:
          0.0655203 = sum of:
            0.0655203 = weight(_text_:publishing in 517) [ClassicSimilarity], result of:
              0.0655203 = score(doc=517,freq=4.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.2671836 = fieldWeight in 517, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=517)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    "Textual content-based search engines for the web have a number of limitations. Firstly, many web resources have little or no textual content (images, audio or video streams etc.) Secondly, precision is low where natural language terms have overloaded meaning (e.g. 'bank', 'watch', 'chip' etc.) Thirdly, recall is incomplete where the search does not take account of synonyms or quasi-synonyms. Fourthly, there is no basis for assisting a user in modifying (expanding, refining, translating) a search based on the meaning of the original search. Fifthly, there is no basis for searching across natural languages, or framing search queries in terms of symbolic languages. The Semantic Web is a framework for creating, managing, publishing and searching semantically rich metadata for web resources. Annotating web resources with precise and meaningful statements about conceptual aspects of their content provides a basis for overcoming all of the limitations of textual content-based search engines listed above. Creating this type of metadata requires that metadata generators are able to refer to shared repositories of meaning: 'vocabularies' of concepts that are common to a community, and describe the domain of interest for that community.
    This type of effort is common in the digital library community, where a group of experts will interact with a user community to create a thesaurus for a specific domain (e.g. the Art & Architecture Thesaurus AAT AAT) or an overarching classification scheme (e.g. the Dewey Decimal Classification). A similar type of activity is being undertaken more recently in a less centralised manner by web communities, producing for example the DMOZ web directory DMOZ, or the Topic Exchange for weblog topics Topic Exchange. The web, including the semantic web, provides a medium within which communities can interact and collaboratively build and use vocabularies of concepts. A simple language is required that allows these communities to express the structure and content of their vocabularies in a machine-understandable way, enabling exchange and reuse. The Resource Description Framework (RDF) is an ideal language for making statements about web resources and publishing metadata. However, RDF provides only the low level semantics required to form metadata statements. RDF vocabularies must be built on top of RDF to support the expression of more specific types of information within metadata. Ontology languages such as OWL OWL add a layer of expressive power to RDF, and provide powerful tools for defining complex conceptual structures, which can be used to generate rich metadata. However, the class-oriented, logically precise modelling required to construct useful web ontologies is demanding in terms of expertise, effort, and therefore cost. In many cases this type of modelling may be superfluous or unsuited to requirements. Therefore there is a need for a language for expressing vocabularies of concepts for use in semantically rich metadata, that is powerful enough to support semantically enhanced search, but simple enough to be undemanding in terms of the cost and expertise required to use it."
  13. OWL Web Ontology Language Test Cases (2004) 0.01
    0.0090673035 = product of:
      0.02720191 = sum of:
        0.02720191 = product of:
          0.05440382 = sum of:
            0.05440382 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.05440382 = score(doc=4685,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    14. 8.2011 13:33:22
  14. Hauff-Hartig, S.: Wissensrepräsentation durch RDF: Drei angewandte Forschungsbeispiele : Bitte recht vielfältig: Wie Wissensgraphen, Disco und FaBiO Struktur in Mangas und die Humanities bringen (2021) 0.01
    0.0090673035 = product of:
      0.02720191 = sum of:
        0.02720191 = product of:
          0.05440382 = sum of:
            0.05440382 = weight(_text_:22 in 318) [ClassicSimilarity], result of:
              0.05440382 = score(doc=318,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.30952093 = fieldWeight in 318, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=318)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 5.2021 12:43:05
  15. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie : Ontologie-basiertes Information-Filtering und -Retrieval mit relationalen Datenbanken (2005) 0.01
    0.00793389 = product of:
      0.023801671 = sum of:
        0.023801671 = product of:
          0.047603343 = sum of:
            0.047603343 = weight(_text_:22 in 4324) [ClassicSimilarity], result of:
              0.047603343 = score(doc=4324,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.2708308 = fieldWeight in 4324, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4324)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    11. 2.2011 18:22:25
  16. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.01
    0.00793389 = product of:
      0.023801671 = sum of:
        0.023801671 = product of:
          0.047603343 = sum of:
            0.047603343 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
              0.047603343 = score(doc=4330,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.2708308 = fieldWeight in 4330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    12. 2.2011 17:35:22
  17. Priss, U.: Faceted knowledge representation (1999) 0.01
    0.00793389 = product of:
      0.023801671 = sum of:
        0.023801671 = product of:
          0.047603343 = sum of:
            0.047603343 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.047603343 = score(doc=2654,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.2708308 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 1.2016 17:30:31
  18. Jacobs, I.: From chaos, order: W3C standard helps organize knowledge : SKOS Connects Diverse Knowledge Organization Systems to Linked Data (2009) 0.01
    0.007721641 = product of:
      0.023164922 = sum of:
        0.023164922 = product of:
          0.046329845 = sum of:
            0.046329845 = weight(_text_:publishing in 3062) [ClassicSimilarity], result of:
              0.046329845 = score(doc=3062,freq=2.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.18892732 = fieldWeight in 3062, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3062)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    SKOS Adapts to the Diversity of Knowledge Organization Systems A useful starting point for understanding the role of SKOS is the set of subject headings published by the US Library of Congress (LOC) for categorizing books, videos, and other library resources. These headings can be used to broaden or narrow queries for discovering resources. For instance, one can narrow a query about books on "Chinese literature" to "Chinese drama," or further still to "Chinese children's plays." Library of Congress subject headings have evolved within a community of practice over a period of decades. By now publishing these subject headings in SKOS, the Library of Congress has made them available to the linked data community, which benefits from a time-tested set of concepts to re-use in their own data. This re-use adds value ("the network effect") to the collection. When people all over the Web re-use the same LOC concept for "Chinese drama," or a concept from some other vocabulary linked to it, this creates many new routes to the discovery of information, and increases the chances that relevant items will be found. As an example of mapping one vocabulary to another, a combined effort from the STITCH, TELplus and MACS Projects provides links between LOC concepts and RAMEAU, a collection of French subject headings used by the Bibliothèque Nationale de France and other institutions. SKOS can be used for subject headings but also many other approaches to organizing knowledge. Because different communities are comfortable with different organization schemes, SKOS is designed to port diverse knowledge organization systems to the Web. "Active participation from the library and information science community in the development of SKOS over the past seven years has been key to ensuring that SKOS meets a variety of needs," said Thomas Baker, co-chair of the Semantic Web Deployment Working Group, which published SKOS. "One goal in creating SKOS was to provide new uses for well-established knowledge organization systems by providing a bridge to the linked data cloud." SKOS is part of the Semantic Web technology stack. Like the Web Ontology Language (OWL), SKOS can be used to define vocabularies. But the two technologies were designed to meet different needs. SKOS is a simple language with just a few features, tuned for sharing and linking knowledge organization systems such as thesauri and classification schemes. OWL offers a general and powerful framework for knowledge representation, where additional "rigor" can afford additional benefits (for instance, business rule processing). To get started with SKOS, see the SKOS Primer.
  19. Definition of the CIDOC Conceptual Reference Model (2003) 0.01
    0.0068004774 = product of:
      0.020401431 = sum of:
        0.020401431 = product of:
          0.040802862 = sum of:
            0.040802862 = weight(_text_:22 in 1652) [ClassicSimilarity], result of:
              0.040802862 = score(doc=1652,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.23214069 = fieldWeight in 1652, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1652)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    6. 8.2010 14:22:28
  20. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.01
    0.0068004774 = product of:
      0.020401431 = sum of:
        0.020401431 = product of:
          0.040802862 = sum of:
            0.040802862 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.040802862 = score(doc=4649,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    26.12.2011 13:40:22