Search (1 results, page 1 of 1)

  • × author_ss:"Andreas, H."
  • × theme_ss:"Wissensrepräsentation"
  1. Andreas, H.: On frames and theory-elements of structuralism (2014) 0.01
    0.013290926 = product of:
      0.053163704 = sum of:
        0.053163704 = product of:
          0.10632741 = sum of:
            0.10632741 = weight(_text_:programming in 3402) [ClassicSimilarity], result of:
              0.10632741 = score(doc=3402,freq=2.0), product of:
                0.29361802 = queryWeight, product of:
                  6.5552235 = idf(docFreq=170, maxDocs=44218)
                  0.04479146 = queryNorm
                0.36212835 = fieldWeight in 3402, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.5552235 = idf(docFreq=170, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3402)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    There are quite a few success stories illustrating philosophy's relevance to information science. One can cite, for example, Leibniz's work on a characteristica universalis and a corresponding calculus ratiocinator through which he aspired to reduce reasoning to calculating. It goes without saying that formal logic initiated research on decidability and computational complexity. But even beyond the realm of formal logic, philosophy has served as a source of inspiration for developments in information and computer science. At the end of the twentieth century, formal ontology emerged from a quest for a semantic foundation of information systems having a higher reusability than systems being available at the time. A success story that is less well documented is the advent of frame systems in computer science. Minsky is credited with having laid out the foundational ideas of such systems. There, the logic programming approach to knowledge representation is criticized by arguing that one should be more careful about the way human beings recognize objects and situations. Notably, the paper draws heavily on the writings of Kuhn and the Gestalt-theorists. It is not our intent, however, to document the traces of the frame idea in the works of philosophers. What follows is, rather, an exposition of a methodology for representing scientific knowledge that is essentially frame-like. This methodology is labelled as structuralist theory of science or, in short, as structuralism. The frame-like character of its basic meta-theoretical concepts makes structuralism likely to be useful in knowledge representation.